Flow measurement

Product overview
Contents

4-5 Product selection
6-7 Highlights of the KROHNE devices
8-17 Electromagnetic flowmeters
18-25 Variable area flowmeters
26-33 Ultrasonic flowmeters
34-41 Mass flowmeters
42-47 Vortex flowmeters
48-55 Differential pressure flow measurement
56-61 Flow controllers
62-63 Communication technology
64-65 KROHNE services
66-67 Calibration
Dear Customers,

Communication techniques are becoming ever more complex, from the field through to the control level. At the same time the demands for recording physical measured variables such as flow rates, fill levels, temperature, pressure and analysis parameters are constantly growing. The principal requirement in this respect is absolute reliability of the measured values. This means the measuring equipment, even when subjected to disruptive influences such as changing flow profiles or inclusion of gas bubbles, must always deliver reliable values, and above all must guarantee virtually 100 % security against failure.

“Measure the facts” means not only reliable measurement of standard process variables – even under the most difficult process conditions – but also clear and precise process diagnostics right through to the material composition of the medium. Both of these contribute to improved process control and allow remarkable increases in process efficiency and production.

In order to guarantee this for you, more than 400 engineers in the worldwide KROHNE Group are continuously engaged in research into promising technologies for the future, in pursuit of improved measurement and further developments. We are a family-owned enterprise and we take our responsibilities seriously. We have permanent representation in more than 130 countries and employ more than 3,500 people in order to bring you highly innovative products from a single source, and tailor-made technical solutions to your measurement requirements, now and in the future.

Michael Rademacher-Dubbick
Stephan Neuburger
KROHNE has unique expertise when it comes to flow measurement. We hold over 1,000 patents relating to flow products and don’t just demonstrate our ability with standard applications but also with applications that are demanding, requiring custom solutions. For us, customer orientation starts as early as research and development. Many of our products which are considered today’s industrial standards, were developed in cooperation with our customers. Today, users around the world benefit from KROHNE innovation: Electromagnetic flowmeters with ceramic liners for highly corrosive media in chlorine chemistry. Mass flowmeters with just one straight tube – ideal for highly viscous media and low flow speeds. Ultrasonic flowmeters for custody transfer, working according to the time-of-flight method. Vortex measuring devices with integrated pressure and temperature compensation. And variable area flowmeters: they established KROHNE’s business in 1921, today we can’t imagine KROHNE without them, if a local display is to ensure the redundancy and the certainty of the system.

Due to their repeatability and accuracy, our flowmeters are installed as reference-meters on standard liquid flow calibration-rigs of national metrology institutes such as PTB (Germany), NMi/EuroLoop (the Netherlands) and NMiJ (Japan).

Online configurator

For detailed device selection, take advantage of our online platform Configure It. It’s quick and easy to find the right product variant for you, to check the availability of the selected product or to request a non-binding quote. For more information about Configure It go to www.krohne-direct.com
Product selection list

This table will help you in selecting the right measuring principle for your application.

<table>
<thead>
<tr>
<th></th>
<th>Electromagnetic flowmeters</th>
<th>Variable area flowmeters</th>
<th>Ultrasonic flowmeters</th>
<th>Mass flowmeters</th>
<th>Vortex flowmeters</th>
<th>Differential pressure flow measurement</th>
<th>Flow controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquids (e.g. water)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Low flow rates (< 2 l/h)</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>–</td>
<td>o</td>
<td>–</td>
</tr>
<tr>
<td>High flow rates (> 100000 m³/h)</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Non-conductive liquids</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Viscous media</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Gases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial gases</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>–</td>
</tr>
<tr>
<td>Low flow rates (< 20 l/min)</td>
<td>–</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>–</td>
</tr>
<tr>
<td>High flow rates</td>
<td>–</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>–</td>
</tr>
<tr>
<td>Steam</td>
<td>–</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>–</td>
</tr>
<tr>
<td>Special applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slurry, media with solids</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>x</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Emulsions (oil/water)</td>
<td>0</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Corrosive liquids (acids, alkalis)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Corrosive gas flows</td>
<td>–</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
<td>–</td>
</tr>
<tr>
<td>Bi-directional measurements</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-wire</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4-wire</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

x = suitable, o = suitable under certain conditions, – = not suitable
6 Highlights of the KROHNE devices

MFC 400 for mass flowmeters
UFC 400 for ultrasonic flowmeters

IFC 300 for electromagnetic flowmeters
MFC 300 for mass flowmeters
UFC 300 for ultrasonic flowmeters
GFC 300 for ultrasonic gas flowmeters

VFC 200 for Vortex flowmeters

IFC 100 for electromagnetic flowmeters

IFC 050 for electromagnetic flowmeters

GFC concept: An electronics concept from which everybody benefits

User-friendliness is traditionally a top priority at KROHNE: whether during installation, commissioning, operation or communication – high-end technology only makes sense if it is simple and convenient for the customer to use.

That is why at KROHNE, user-friendliness begins with the electronics. Our development and application engineers have worked for years to develop a comprehensive design known as the General Device Concept – GDC for short.

What does it all mean? First of all, it features a uniform user interface to speed up the commissioning of the devices. Secondly, it boasts extensive device and process diagnostic functions, which can be exceeded by the Toolbox module. Thirdly, it’s easy to integrate fieldbus interfaces such as PROFIBUS® and FOUNDATION™ fieldbus thanks to the high degree of modularity. And lastly, it’s an electronics package that can be used in various housing shapes.

The high-end position in terms of functionality and accuracy is occupied by the electromagnetic converter IFC 300. It offers full diagnostic capabilities and offers the maximum freedom in defining process parameters and settings for even the most complex measuring applications.

With IFC 100, its diagnostic capabilities and its hazardous area approvals we offer a sophisticated solution for general applications. Optionally it even provides communication protocols like PROFIBUS®, FOUNDATION™ fieldbus and Modbus.

The IFC 050 is the all-purpose device which boasts outstanding performance. Not only when it comes to measuring accuracy and diagnostics but also defines a new benchmark in terms of the price-performance ratio.

The converter MFC 400 is a further development of the GDC concept, providing new performance features such as Entrained Gas Management™ for mass flowmeters.

The most recent member of the GDC family is the VFC 200. The converter for Vortex flowmeters is the first 2-wire device in this group and – thanks to its development according to the latest edition of IEC 61508 – ideally suitable for safety-related applications (SIL 2).
User-friendliness begins with selecting the right display and control elements.

All devices feature a large, high-contrast display which makes it possible to display plain text information as well as graphic information such as the trend development of the flow.

Operation is simple and convenient thanks to a user-friendly interface with four optical buttons. Not only does it look good – it’s also extremely practical.

For example, the glass cover which protects the display from dirt and dust does not have to be removed during parameterization or operation. Using the Quick Setup menu, the user can quickly adapt the OPTIFLUX to the application.

The converter can communicate with the user in many languages including German, English, French and Spanish.

Human Machine Interface (HMI):
Simply clever, simply well thought-out

At KROHNE, we believe in the concept of modularity when it comes to offering our customers the measuring solution best suited to their process. Both our IFC and MFC converters can be freely combined with all devices in the OPTIFLUX and OPTIMASS lines. This modularity is also reflected in the names of the devices. For example, the OPTIFLUX 1300 is a combination of the OPTIFLUX 1000 sensor and the IFC 300 converter.

OPTICHECK: On-site verification tool for KROHNE flowmeters

The OPTICHECK is the essential tool for making sure that your installed flowmeters are performing to specification. When you connect the tool in-line on site, it gathers measuring data to ensure that the flowmeter is performing within 1% of the factory calibration. The baseline can be historic repair data from the factory or on-site test results after performing a full verification.

Modular product lines:
Many combinations for one customised solution
The modular product line

Converters

IFC 050 W Display/Blind: Wall-mounted
IFC 050 C Display/Blind: Basic applications
IFC 100 W Wall-mounted
IFC 100 C Standard applications

IFC 300 R Rack-mounted
IFC 300 W Wall-mounted
IFC 300 F Field housing
IFC 300 C General purpose

Flow sensors

OPTIFLUX 1000
The sandwich (wafer) solution for compact installation

OPTIFLUX 2000
The all-round solution for the water and wastewater industry

WATERFLUX 3000
The solution for measuring small and large flows without requiring inlets or outlets

OPTIFLUX 4000
The all-round solution for the process industry

OPTIFLUX 5000 sandwich
Ceramic measuring tube: maximum media and abrasion resistance and accuracy

OPTIFLUX 5000 flange
Ceramic measuring tube: maximum media and abrasion resistance and accuracy

OPTIFLUX 6000
The hygienic solution for the food and pharmaceutical industry
Electromagnetic flowmeters

The specialists

OPTIFLUX 4040 C
2-wire device

OPTIFLUX 7300 C sandwich
With non wetted capacitive electrodes and ceramic liner

OPTIFLUX 7300 C flange
With non wetted capacitive electrodes and ceramic liner

TIDALFLUX 2300 F
For partially filled pipelines, Ex Zone 1

WATERFLUX 3070
The battery operated solution for large turndown ratios and small spaces with no inlets or outlets

BATCHFLUX 5500
For volumetric filling systems in the beverage industry

Accessoires

OPTICHECK
On-site verification tool for calibration verification and documentation

Electromagnetic flowmeters
Electromagnetic flowmeters

The measuring principle

As early as 1832, Michael Faraday tried to determine the speed of the current in the Thames by measuring the voltage induced in flowing water by the earth’s magnetic field. Electromagnetic flow measurement is based on Faraday’s law of induction. According to this law, a voltage is induced when an electric conductive fluid flows through the magnetic field of an electromagnetic flowmeter. This voltage is proportional to the flow velocity of the medium.

The induced voltage is picked up either by two electrodes in contact with the medium or by capacitive electrodes with no contact to medium and supplied to a signal converter.

A signal converter amplifies the signal and converts it into a standard signal (4…20 mA) as well as to a frequency/pulse signal (e.g. one pulse for every cubic meter of measured medium that flows through the measuring tube).
As founder and world market leader in electromagnetic flowmeter technology, we have been impressing our customers with innovation for more than 60 years, innovations that continue to set the standard for the competition. Our OPTIFLUX product line is an excellent example of this: a converter for all applications. A one-of-a-kind diagnostics package that can even look into the process. An intuitive operating concept featuring a quick start function for simple start-up.

Thanks to this unique combination of high-end technology and maximum user-friendliness, you will benefit in a wide range of industries: in the food and beverage industry, where fruit juices, milk and liquid hops must be mixed, dosed and filled under hygienic conditions. In the chemicals industry and in the pulp and paper industry, where our devices deal with acids, alkalis, pastes, sludges and other caustic media, or in the metal and mining industry where media with a high solid content are encountered on a daily basis.

We produce electromagnetic flowmeters in our plants in the Netherlands, Brazil, India and China. It is no wonder that the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany, relies on electromagnetic flowmeters from KROHNE in their calibration systems.
Electromagnetic flow measurement:
Increased safety through the use of high-performance ceramics in flange design

The converter is not the only critical factor in the reproducibility of the measured value during electromagnetic flow measurement. The form stability of the measuring tube under temperature and pressure stresses also plays an important role. To obtain a reliable measurement even with critical media, the measuring tube material, the electrode construction and the process connection must all be taken into account.

The challenge: The new measuring tube material should be highly resistant to caustic, corrosive and abrasive media and show off its superiority to conventional liners made of plastic such as PFA.

KROHNE accepted this challenge and, in close cooperation with FRIATEC AG from Mannheim, Germany, developed a high-performance ceramics for industrial use which can even withstand rapid temperature changes and high mechanical stresses.

When it comes to measuring critical media such as those used in chlorine chemistry, it was also necessary to optimise the electrode construction. The result of these efforts? Using the so-called Cermet electrode has made it possible to develop a 100% gap-free design. In doing so, the metal of the electrode combines with the material of the ceramic to form an insoluble compound when exposed to high temperatures.

In addition to the sandwiched version, our engineers also developed a flanged version. This version not only guarantees easy installation but also minimises the risk of leakage in case of a fire.

It is no wonder that the fields of application of the ceramic electromagnetic flowmeter are so numerous today. They range from measuring acids and alkalis in chemistry to usage in chlorine chemistry, to the volumetric filling of liquids in the beverage, pharmaceutical and cosmetics industries.
Electromagnetic flowmeters:
3x100%-diagnostics for maximum certainty

KROHNE offers its customers complete application and process diagnostics as well as an accuracy and linearity test (out-of-spec diagnostics) in addition to the usual device diagnostics for the OPTIFLUX line.

With the indicators supplied by OPTIFLUX and knowledge of the process, the user can detect the following application problems with a high degree of certainty:

- Gas bubbles
- Electrode corrosion, deposits on electrodes
- Short-circuit
- Low conductivity of measured medium
- Partial filling of measuring tube
- Liner damage
- External disrupting magnetic fields
- Disrupted flow profile

During the out-of-spec test, a determination is made, both online and cyclically, as to whether the device is still within its specifications. In particular, the accuracy is tested by feeding a test signal. The linearity of the device and the accuracy of the field current with which the magnetic field is generated are also checked.

Thanks to the 3x100%-diagnostics, the OPTIFLUX is much more than a simple flowmeter: it examines the process and provides the user with valuable information. In this respect, the OPTIFLUX even exceeds the requirements of VDI/VDE/NAMUR 2650.
The modular product line

<table>
<thead>
<tr>
<th>The sandwich (water) solution for compact installation</th>
<th>The all-round solution for the water and wastewater industry</th>
<th>The solution for measuring small and large flows without requiring inlets or outlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLUX 1050</td>
<td>OPTIFLUX 2050</td>
<td>WATERFLUX 3050</td>
</tr>
<tr>
<td>OPTIFLUX 1000 + IFC 050</td>
<td>OPTIFLUX 2000 + IFC 050</td>
<td>WATERFLUX 3000 + IFC 050</td>
</tr>
</tbody>
</table>

- **Measuring accuracy:** ±0.5% of measured value above 0.5 m/s; depending on measuring sensor ±2.5 mm/s below 0.5 m/s; independent of measuring sensor
- **Electrical conductivity:** ≥5 μS/cm (water ≥20 μS/cm)
- **Process conditions:** Solvent content <10%
- **Outputs:** Current, pulse, status
- **Power supply:** 100...230 VAC, 24 VDC
- **Protection category:** Compact (C) Wall (W)

<table>
<thead>
<tr>
<th>OPTIFLUX 1100</th>
<th>OPTIFLUX 2100</th>
<th>WATERFLUX 3100</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLUX 1000 + IFC 100</td>
<td>OPTIFLUX 2000 + IFC 100</td>
<td>WATERFLUX 3000 + IFC 100</td>
</tr>
</tbody>
</table>

- **Measuring accuracy:** ±0.3% of measured value
- **Electrical conductivity:** ≥5 μS/cm (water ≥20 μS/cm)
- **Process conditions:** Solid content max. 10%
- **Outputs:** Current, pulse, status
- **Power supply:** 100...230 VAC, 12...24 VDC, 24 VAC/DC
- **Protection category:** Field (F) Wall (W) 19” Rack (R)

<table>
<thead>
<tr>
<th>OPTIFLUX 1300</th>
<th>OPTIFLUX 2300</th>
<th>WATERFLUX 3300</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLUX 1000 + IFC 300</td>
<td>OPTIFLUX 2000 + IFC 300</td>
<td>WATERFLUX 3000 + IFC 300</td>
</tr>
</tbody>
</table>

- **Measuring accuracy:** ±0.3% of measured value
- **Electrical conductivity:** ≥5 μS/cm (water ≥20 μS/cm)
- **Process conditions:** Solid content max. 70%
- **Outputs:** Current, pulse, status
- **Power supply:** 100...230 VAC, 12...24 VDC, 24 VAC/DC
- **Protection category:** Compact (C) Field (F) Wall (W) 19” Rack (R)

<table>
<thead>
<tr>
<th>OPTIFLUX 1000</th>
<th>OPTIFLUX 2000</th>
<th>WATERFLUX 3000</th>
</tr>
</thead>
</table>

- **Measuring accuracy:** ±0.3% of measured value
- **Electrical conductivity:** ≥5 μS/cm (water ≥20 μS/cm)
- **Process conditions:** Solid content max. 10%
- **Outputs:** Current, pulse, status
- **Power supply:** 100...230 VAC, 12...24 VDC, 24 VAC/DC
- **Protection category:** Compact (C) Field (F) Wall (W) 19” Rack (R)

<table>
<thead>
<tr>
<th>OPTIFLUX 1000</th>
<th>OPTIFLUX 2000</th>
<th>WATERFLUX 3000</th>
</tr>
</thead>
</table>

- **Measuring accuracy:** ±0.3% of measured value
- **Electrical conductivity:** ≥5 μS/cm (water ≥20 μS/cm)
- **Process conditions:** Solid content max. 10%
- **Outputs:** Current, pulse, status
- **Power supply:** 100...230 VAC, 12...24 VDC, 24 VAC/DC
- **Protection category:** Compact (C) Field (F) Wall (W) 19” Rack (R)

<table>
<thead>
<tr>
<th>Process connection EN 1092-1</th>
<th>Process connection ASM E B16.5</th>
<th>Process connection 1092-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN10...150; PN16, 40</td>
<td>CL 150; 300, 300</td>
<td>CL 150; 300, 300</td>
</tr>
<tr>
<td>Process temperature</td>
<td>Process temperature</td>
<td>Process temperature</td>
</tr>
<tr>
<td>-25...+120°C; -13...+248°F</td>
<td>-25...+65°C; -13...+149°F</td>
<td>-25...+65°C; -13...+149°F</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Ambient temperature</td>
<td>Ambient temperature</td>
</tr>
<tr>
<td>-25...+65°C; -13...+149°F</td>
<td>-25...+65°C; -13...+149°F</td>
<td>-25...+65°C; -13...+149°F</td>
</tr>
<tr>
<td>Materials liner</td>
<td>Materials liner</td>
<td>Materials liner</td>
</tr>
<tr>
<td>PFA</td>
<td>Polypropylene, hard rubber, Polyethylene (PO)</td>
<td>Polyethylene, hard rubber, Polyethylene (PO)</td>
</tr>
<tr>
<td>Materials electrodes</td>
<td>Materials electrodes</td>
<td>Materials electrodes</td>
</tr>
<tr>
<td>Hastelloy®</td>
<td>Hastelloy®, titanium, stainless steel</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>1.4301; AISI 304</td>
<td>1.4301; AISI 304</td>
</tr>
<tr>
<td>Sensor</td>
<td>Sensor</td>
<td>Sensor</td>
</tr>
<tr>
<td>IP66, 67, NEMA4, 4X</td>
<td>IP66, 67, 68, NEMA4, 4X</td>
<td>IP66, 67, 68, NEMA4, 4X, 6, 6P</td>
</tr>
<tr>
<td>Ex-Approvals</td>
<td>Ex-Approvals</td>
<td>Ex-Approvals</td>
</tr>
<tr>
<td>FDA, MI-001, MI-005</td>
<td>FDA, MI-001, MI-005</td>
<td>FDA, MI-001, MI-005</td>
</tr>
</tbody>
</table>
The all-round solution for the process industry

<table>
<thead>
<tr>
<th>Ceramic measuring tube: maximum media and abrasion resistance and accuracy</th>
<th>Ceramic measuring tube: maximum media and abrasion resistance and accuracy</th>
<th>The hygienic solution for the food and pharmaceutical industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic measuring tube: maximum media and abrasion resistance and accuracy</td>
<td>Ceramic measuring tube: maximum media and abrasion resistance and accuracy</td>
<td>The hygienic solution for the food and pharmaceutical industry</td>
</tr>
</tbody>
</table>

OPTIFLUX 4100

- **OPTIFLUX 4000** + IFC 100
 - ±0.3% of measured value
 - ±5 μS/cm (water ≥20 μS/cm)
 - Solid content max. 10%
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66/67; NEMA 4/4X

OPTIFLUX 5100 sandwich

- **OPTIFLUX 5000** + IFC 100
 - ±0.3% of measured value
 - ±5 μS/cm (water ≥20 μS/cm)
 - Solid content max. 10%
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66/67; NEMA 4/4X

OPTIFLUX 5100 flange

- **OPTIFLUX 6000** + IFC 100
 - ±0.3% of measured value
 - ±5 μS/cm (water ≥20 μS/cm)
 - Solid content max. 10%
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66/67; NEMA 4/4X

OPTIFLUX 4300

- **OPTIFLUX 4000** + IFC 300
 - ±0.2% of measured value
 - ±1 μS/cm (water ≥20 μS/cm)
 - Solid content max. 70%
 - Current, pulse, status
 - 85...250 VAC; 11...31 VDC; 20.5...26 VAC/DC
 - IP66, 67; NEMA4X, 6

OPTIFLUX 5300 sandwich

- **OPTIFLUX 5000** + IFC 300
 - ±0.15% of measured value
 - ±1 μS/cm (water ≥20 μS/cm)
 - Solid content max. 70%
 - Current, pulse, status
 - 85...250 VAC; 11...31 VDC; 20.5...26 VAC/DC
 - IP66, 67; NEMA4X, 6

OPTIFLUX 5300 flange

- **OPTIFLUX 6000** + IFC 300
 - ±0.2% of measured value
 - ±1 μS/cm (water ≥20 μS/cm)
 - Solid content max. 70%
 - Current, pulse, status
 - 85...250 VAC; 11...31 VDC; 20.5...26 VAC/DC
 - IP66, 67; NEMA4X, 6

OPTIFLUX 4000

- **OPTIFLUX 4000 sandwich**
 - ±0.3% of measured value
 - ±5 μS/cm (water ≥20 μS/cm)
 - Solid content max. 10%
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66, 67; NEMA4X, 6

OPTIFLUX 5000 flange

- **OPTIFLUX 6000 sandwich**
 - ±0.3% of measured value
 - ±5 μS/cm (water ≥20 μS/cm)
 - Solid content max. 10%
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66, 67; NEMA4X, 6

OPTIFLUX 5000 flange

- **OPTIFLUX 6000 sandwich**
 - ±0.3% of measured value
 - ±5 μS/cm (water ≥20 μS/cm)
 - Solid content max. 10%
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66, 67; NEMA4X, 6

OPTIFLUX 6000

- **OPTIFLUX 6000**
 - ±0.5% of measured value above 0.5 m/s; depending on measuring sensor ±2.5 mm/s
 - Current, pulse, status
 - 100...230 VAC, 12...24 VDC
 - IP66, 67; NEMA 4/4X, 6, 6P

Electromagnetic flowmeters

- **OPTIFLUX 4000**
 - D2N.2...2,000; PN6.40
 - DN2.5...100; PN16, 40
 - DN15...300; PN10, 16, 40
 - DN2.5...150; hygienic connections

- **OPTIFLUX 5000**
 - 1/10...80°; CL 150, 300, 600, 900, 1500
 - 1/10°...4°; CL 150, 300
 - 1/2...12°; CL 150, 300
 - 1/10°...6°; hygienic connections

- **OPTIFLUX 6000**
 - -
 - -
 - -

PFA, PTFE, ETFE and hard rubber, PU

- Aluminiun oxide, Zirconium oxide
- Aluminiun oxide, Zirconium oxide
- Aluminiun oxide, Zirconium oxide
- PFA

Hastelloy®, titanium, tantalum, stainless steel, platinum, low noise

- Cermet
dofN150°/°; stainless steel, HC4, titanium, tantalum, platinum
- Hastelloy®, stainless steel, titanium, tantalum, platinum

- IP66, 67, 68; NEMA4, 4X, 6, 6P
- IP66, 67, 68, NEMA4, 4X, 6, 6P
- IP66, 67, 68, NEMA4, 4X, 6, 6P
- IP66, 67, 68, NEMA4, 4X, 6, 6P

FDA, OIML, R49, R117, KIWA, MI-001, MI-005

- FDA, MI-001, MI-005
- FDA, MI-001, MI-005
- FDA, MI-001, MI-005
- FDA, MI-001, MI-005
Electromagnetic flowmeters

The specialists

For partially filled pipelines, Ex Zone 1

<table>
<thead>
<tr>
<th>TIDALFLUX 2300 F</th>
<th>WATERFLUX 3070</th>
</tr>
</thead>
</table>

The battery operated solution for large turndown ratios and small spaces with no inlets or outlets

<table>
<thead>
<tr>
<th>Signal converter</th>
<th>IFC 300 F</th>
<th>IFC 070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring accuracy</td>
<td>±1% of full scale</td>
<td>±0.2% of measured value</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>>50 µS/cm (water ≥50 µS/cm)</td>
<td>>20 µS/cm</td>
</tr>
<tr>
<td>Process conditions</td>
<td>Solid content max. 70%</td>
<td>Clean water</td>
</tr>
<tr>
<td>Outputs</td>
<td>Current, pulse, status</td>
<td>Pulse, status</td>
</tr>
<tr>
<td>Inputs</td>
<td>Binary</td>
<td>-</td>
</tr>
<tr>
<td>Communication</td>
<td>HART®, Modbus</td>
<td>Datalogger/OSM (option)</td>
</tr>
<tr>
<td>Power supply</td>
<td>24, 115/120, 230/240 VAC</td>
<td>1 or 2 internal battery, external battery, up to 15 years battery lifetime</td>
</tr>
<tr>
<td>Protection category: Compact (C) Field (F)</td>
<td>IP67, NEMA4, 4X</td>
<td>IP67, 68; NEMA4x, 6, 6P IP66, 67; NEMA4x, 6</td>
</tr>
<tr>
<td>Approvals</td>
<td>Ex Zone 1</td>
<td>OIML R49, MI-001</td>
</tr>
<tr>
<td>Measuring sensor</td>
<td>TIDALFLUX 2000</td>
<td>WATERFLUX 3000</td>
</tr>
<tr>
<td>Process connections</td>
<td>EN 1092-1</td>
<td>DN200…1800; PN6, 10 DN25…300; PN10, 16 DN350 …600; PN10 14”…24”; CL 150 (10 bar/145 psi rated)</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>8…72”; CL 150, 300</td>
<td>1…12”; CL 150</td>
</tr>
<tr>
<td>Temperature ranges</td>
<td>Process</td>
<td>-5...+60°C; +23...+140°F</td>
</tr>
<tr>
<td></td>
<td>Ambient</td>
<td>-40...+65°C; -40...+149°F</td>
</tr>
<tr>
<td>Materials</td>
<td>Liner</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>Electrodes</td>
<td>Hastelloy® C22, stainless steel</td>
<td>Stainless steel 1.4301; AISI 304</td>
</tr>
<tr>
<td>Protection category</td>
<td>Measuring sensor</td>
<td>IP67, 68; NEMA4, 4X, 6, 6P</td>
</tr>
<tr>
<td>Approvals</td>
<td>Ex (with signal converter)</td>
<td>Ex Zone 1</td>
</tr>
<tr>
<td>Other approvals</td>
<td>-</td>
<td>ACS, DVGW, TZW/UBA, NSF, WRAS, OIML R49, MI-001</td>
</tr>
</tbody>
</table>

TIDALFLUX 2300 F

- Battery operated
- Measuring accuracy: ±1% of full scale
- Electrical conductivity: >50 µS/cm (water ≥50 µS/cm)
- Process conditions: Solid content max. 70%
- Outputs: Current, pulse, status
- Inputs: Binary
- Communication: HART®, Modbus
- Power supply: 24, 115/120, 230/240 VAC
- Protection category: IP67, NEMA4, 4X
- Approvals: Ex Zone 1
- Materials: Liner - Polyurethane
- Electrodes - Hastelloy® C22, stainless steel
- Protection category: Measuring sensor - IP67, 68; NEMA4, 4X, 6, 6P
- Approvals: Ex (with signal converter) - Ex Zone 1
- Other approvals - ACS, DVGW, TZW/UBA, NSF, WRAS, OIML R49, MI-001
Electromagnetic flowmeters

For partially filled pipelines, Ex Zone 1

The battery operated solution for large turndown ratios and small spaces with no inlets or outlets

2-wire device With non wetted capacitive electrodes and ceramic liner For volumetric filling systems in the beverage industry

<table>
<thead>
<tr>
<th>Signal converter</th>
<th>OPTIFLUX 4040 C</th>
<th>OPTIFLUX 7300 C sandwich, flange</th>
<th>BATCHFLUX 5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring accuracy</td>
<td>±0.5% of measured value</td>
<td>± 0.5% of measured value</td>
<td>±0.2% of measured value</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>>5 μS/cm (water >20 μS/cm)</td>
<td>0.05 μS/cm [demineralised cold water >1 μS/cm]</td>
<td>>5 μS/cm (water >20 μS/cm)</td>
</tr>
<tr>
<td>Process conditions</td>
<td>Solid content max. 3%</td>
<td>Solid content max. 70%; gas content max. 5%</td>
<td>Water…milk</td>
</tr>
<tr>
<td>Outputs</td>
<td>Current</td>
<td>Current, pulse, status</td>
<td>Frequency</td>
</tr>
<tr>
<td>Inputs</td>
<td>-</td>
<td>Control, current</td>
<td>-</td>
</tr>
<tr>
<td>Communication</td>
<td>HART®</td>
<td>HART®, FF, PA, DP, Modbus</td>
<td>-</td>
</tr>
<tr>
<td>Power supply</td>
<td>14…36 VDC</td>
<td>100…230 VAC, 24 VDC, 24 VAC/DC</td>
<td>24 VDC</td>
</tr>
<tr>
<td>Protection category: Compact (C) Field (F) Wall (W)</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>-</td>
<td>DN2.5, 4, 6, 25, 40: IP66, 67; NEMA4, 4X, 6; DN10, 15: IP69K; NEMA6P</td>
</tr>
<tr>
<td>Measuring sensor</td>
<td>OPTIFLUX 4000</td>
<td>OPTIFLUX 7000</td>
<td>BATCHFLUX 5000</td>
</tr>
<tr>
<td>Process connections</td>
<td>EN 1092-1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>3/8", 1"; CL 150, 300</td>
<td>1"; 150 lb</td>
<td>1/10", 1/2"</td>
</tr>
<tr>
<td>Temperature ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>-25...+140°C; -13...+284°F</td>
<td>-40...+100°C; -40...+212°F</td>
<td>-20...+140°C; -4...+284°F</td>
</tr>
<tr>
<td>Ambient</td>
<td>-25...+60°C; -13...+140°F</td>
<td>-40...+65°C; -40...+149°F</td>
<td>0...+60°C; +32...+140°F</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liner</td>
<td>PTFE, FFA</td>
<td>Ceramic</td>
<td>Zirconium dioxide</td>
</tr>
<tr>
<td>Electrodes</td>
<td>Hastelloy®, platinum, stainless steel, tantalum, titanium</td>
<td>Non wetted, capacitive</td>
<td>Cermet</td>
</tr>
<tr>
<td>Protection category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>DN2.5, 4, 6, 25, 40: IP66, 67; NEMA4, 4X, 6; DN10, 15: IP69K; NEMA6P</td>
</tr>
<tr>
<td>Approvals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex (with converter)</td>
<td>Ex, FM</td>
<td>ATEX</td>
<td>-</td>
</tr>
<tr>
<td>Other approvals</td>
<td>FDA</td>
<td>Conform FDA regulations</td>
<td>3A, FDA</td>
</tr>
</tbody>
</table>
Glass devices

DK46, 47, 48, 800
Small and compact dosing meters with valve

VA40
All-purpose flowmeter with various process connections

GA24
For maximum safety requirements

DK700
The cost-effective version for the analytical field

VA45
For measuring gases with low operating pressures

K20
The cost-effective plastic alternative
Variable area flowmeters

- **H250 M40**
 - The new standard device, explosion proof and intrinsically safe

- **H250 M9**
 - The proven-in-use, intrinsically safe solution for the process industry

- **H250 M8M**
 - With space-saving display

- **H250 M8E**
 - With illuminated display and mA output

- **DK34**
 - For vertical flows

- **DK37 M8M**
 - Dosing meter with large display

- **DK37 M8E**
 - Dosing meter with electronic signal output

- **DK32, 34**
 - Dosing meter for high pressures and rough ambient conditions

Metal devices
Variable area flowometers

The measuring principle

Variable area flowmeters are suitable for the measuring of clean liquids and gases. They consist of upright conical tube made of metal, glass or plastic, in which a sophisticated float moves freely up and down. The flow goes through the tube, which is applied from the bottom to top, causes the float to rise until the forces are in equilibrium.

Three forces are acting on the float:
- The buoyancy force B, which depends on the density of the medium and the volume of the float.
- The gravity force G, which depends on the mass of the float.
- The flow force F which depends on the float shape and the flow velocity through the variable area between float and tube.

Every flow rate corresponds to a defined variable area resulting from the conical shape of the measuring tube and the specific position of the float. With glass cones, the flow value can be read directly from a scale at the level of the float. With metal cones, the float position is transmitted to an indicator by magnetic means. There is no need for auxiliary power. Different measuring ranges are realised through variations in cone sizes and shapes and in selecting different float shapes and materials.

Highlights:
- Local indication without the need for auxiliary power
- Use in hazardous areas
- Accurate measurement even at very low flow rates (<0.5 l/h)
- Extended turndown ratio up to 100:1
- Suitable for low operating pressures
- Can be used even with short or no straight inlets/outlets
- Modular display and measuring transducer concept: easy component replacement
- World’s only all-metal variable area flowmeter with EHEDG certification
- Flowmeters for nuclear power plants meet requirements of KTA 1401, RCC-E, RCC-M and ASME Section III and we are authorized to manufacture products with ASME N stamp and NPT stamp
- SIL2 certified
- Any meter orientation possible: vertical, horizontal or in fall pipes
- Optional limit switches, current output, totalizer, communication interfaces
Maximum reliability when measuring liquids and gases – Since 1921

Since 1921, the name KROHNE has not only stood for innovative and reliable process measuring technology solutions, but also for exact, reliable and long-lasting variable area measuring technology.

Today, as the world’s market leader, we cover a variety of applications with our comprehensive product portfolio of metal, glass and plastic cones.

Typical applications include:

- Measurement and dosing of additives such as catalysts, surfactants, foam and corrosion inhibitors, caustic soda, chlorine or sulphur substances, etc.
- Inerting of tanks or containers
- Measurement and dispensing of rinsing mediums (purge meters)
- Sample feed measurement for analyser systems
- Dosing and monitoring of lubricants and coolants for bearings and seals for process pumps and rotating machinery
- Hygienic applications in the food and pharmaceutical industries
- Measurement of gases and chemicals in laboratories and test facilities
- Gas/oil burner consumption measurement

For over 30 years, KROHNE has been a reliable partner for nuclear power plant operators and system builders. In this field, KROHNE meets the requirements of KTA 1401, RCC-E, RCC-M and ASME Section III. This authorizes us to mark products with the N stamp and NPT stamp.

Industries:
- Chemical
- Petrochemical
- Mechanical and plant engineering
- Offshore plants
- Pharmaceutical
- Food and beverage
- Water and wastewater
- Power plants

Measuring the flow of CO₂ in the inlet lines of the storage tanks in the beverage industry
Metal devices

Measuring accuracy (VDI/VDE 3513-2)	With space-saving display	With illuminated display and mA output	The proven-in-use, intrinsically safe solution for the process industry	The new standard device, explosion proof and intrinsically safe
	H250 M8M	H250 M8E	H250 M9	H250 M40

Measuring ranges

<table>
<thead>
<tr>
<th>Measuring ranges</th>
<th>Water</th>
<th>Air</th>
<th>Temperature ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10...6300 l/h</td>
<td>10...20000 l/h</td>
<td>0.7...200 m³/h</td>
</tr>
<tr>
<td></td>
<td>16...4800 l/h</td>
<td>16...8000 l/h</td>
<td>0.7...250 l/h</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Wetted parts</th>
<th>Stainless steel, Hastelloy®, Monel®, ceramic, PTFE</th>
<th>Stainless steel, Hastelloy®, Monel®, ceramic, PTFE</th>
<th>Stainless steel, Hastelloy®, titanium, Monel®, ceramic, PTFE</th>
<th>Stainless steel, Hastelloy®, titanium, Monel®, ceramic, PTFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>PPS or stainless steel</td>
<td>PPS or stainless steel</td>
<td>Die cast aluminium, polyurethane coating or stainless steel</td>
<td>Die cast aluminium, polyurethane coating or stainless steel</td>
</tr>
</tbody>
</table>

Approvals

<table>
<thead>
<tr>
<th>Ex</th>
<th>ATEX, NEPSI</th>
<th>ATEX, NEPSI</th>
<th>ATEX, NEPSI, FM</th>
<th>ATEX, IEC-EX, cFMus, NEPSI, CCOE/PESO, KGS, EAC/GOST, INMETRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hygiene</td>
<td>EHEDG</td>
<td>EHEDG</td>
<td>EHEDG</td>
<td>EHEDG</td>
</tr>
<tr>
<td></td>
<td>Dosing meter for high pressures and rough ambient conditions</td>
<td>Dosing meter with large display</td>
<td>Dosing meter with electronic signal output</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>DK32, 34</td>
<td>DK37 M8M</td>
<td>DK37 M8E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring accuracy</td>
<td>4.0%</td>
<td>2.5%</td>
<td>2.5%</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>-</td>
<td>-</td>
<td>4…20 mA</td>
<td></td>
</tr>
<tr>
<td>Limit switches</td>
<td>2</td>
<td>2</td>
<td>via HART®</td>
<td></td>
</tr>
<tr>
<td>Totaliser</td>
<td>-</td>
<td>-</td>
<td>via HART®</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>-</td>
<td>-</td>
<td>HART®</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>IP65</td>
<td>IP66</td>
<td>IP66</td>
<td></td>
</tr>
<tr>
<td>Protection category</td>
<td>IP65</td>
<td>IP66</td>
<td>IP66</td>
<td></td>
</tr>
<tr>
<td>Process connections</td>
<td>1/4” NPT, 1/2” NPT, G1/4, cutting clamp, clamping ring, hose connections*</td>
<td>1/4” NPT, 1/2” NPT, G1/4, cutting clamp, clamping ring, hose connections*</td>
<td>1/4” NPT, 1/2” NPT, G1/4, cutting clamp, clamping ring, hose connections*</td>
<td></td>
</tr>
<tr>
<td>Flange adapter</td>
<td>DN15, 25; 1/2, 1”</td>
<td>DN15, 25; 1/2, 1”</td>
<td>DN15, 25; 1/2, 1”</td>
<td></td>
</tr>
<tr>
<td>Pressure ratings</td>
<td>PN40*</td>
<td>PN40*</td>
<td>PN40*</td>
<td></td>
</tr>
<tr>
<td>EN 1092-1</td>
<td>PN40*</td>
<td>PN40*</td>
<td>PN40*</td>
<td></td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>CL 150, 300*</td>
<td>CL 150, 300*</td>
<td>CL 150, 300*</td>
<td></td>
</tr>
<tr>
<td>Process pressure</td>
<td>130 bar; 1885 psi optional to 500 bar; 7251 psi</td>
<td>130 bar; 1885 psi optional to 500 bar; 7251 psi</td>
<td>130 bar; 1885 psi optional to 500 bar; 7251 psi</td>
<td></td>
</tr>
<tr>
<td>Measuring ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>3…150 l/h</td>
<td>3…250 l/h</td>
<td>3…250 l/h</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>16…4800 l/h</td>
<td>16…8000 l/h</td>
<td>16…8000 l/h</td>
<td></td>
</tr>
<tr>
<td>Temperature ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>-80…+150°C; -112…+302°F</td>
<td>-40…+150°C; -40…+302°F</td>
<td>-25…+135°C; -13…+275°F</td>
<td></td>
</tr>
<tr>
<td>Ambient non-Ex</td>
<td>-20…+70°C; -4…+128°F</td>
<td>-40…+70°C; -40…+128°F</td>
<td>-20…+70°C; -4…+128°F</td>
<td></td>
</tr>
<tr>
<td>Ambient Ex</td>
<td>-20…+60°C; -4…+140°F</td>
<td>-40…+60°C; -40…+140°F</td>
<td>-20…+60°C; -4…+140°F</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>Stainless steel, titanium, Monel®, Hastelloy®</td>
<td>Stainless steel, titanium, Monel®, Hastelloy®</td>
<td>Stainless steel, titanium, Monel®, Hastelloy®</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Die cast aluminium, polyurethane coating</td>
<td>PPS or stainless steel</td>
<td>PPS or stainless steel</td>
<td></td>
</tr>
<tr>
<td>Approvals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex</td>
<td>ATEX, NEPSI, FM, IEC-EX</td>
<td>ATEX, cFMus, NEPSI, IEC-EX</td>
<td>ATEX, cFMus, NEPSI, IEC-EX</td>
<td></td>
</tr>
<tr>
<td>Hygiene</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*others on request
Glass devices

<table>
<thead>
<tr>
<th></th>
<th>Small and compact dosing meters with valve</th>
<th>The cost-effective version for the analytical field</th>
<th>All-purpose flowmeter with various process connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DK46, 47, 48, 800</td>
<td>DK700</td>
<td>VA40</td>
</tr>
<tr>
<td>Measuring accuracy (VDI/VDE 3513)</td>
<td>1.0%; 2.5%; 4.0%</td>
<td>4.0%; 6.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Outputs</td>
<td>-</td>
<td>-</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Limit switches</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Totaliser</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Communication</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power supply</td>
<td>-</td>
<td>-</td>
<td>14…30 VDC [2-wire]</td>
</tr>
<tr>
<td>Protection category</td>
<td>IP65</td>
<td>-</td>
<td>IP67</td>
</tr>
<tr>
<td>Process connections</td>
<td>1/4" NPT, G1/4, cutting clamp, clamping ring, hose connections*</td>
<td>G1/8, hose connections</td>
<td>Threaded, flange, hose connections, hygienic design</td>
</tr>
<tr>
<td>Pressure ratings</td>
<td>EN 1092-1</td>
<td>-</td>
<td>PN40</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>-</td>
<td>-</td>
<td>CL 150</td>
</tr>
<tr>
<td>Process pressure</td>
<td>0…10 bar; 0…145 psi</td>
<td>0…4 bar; 0…58 psi</td>
<td>0…10 bar; 0…145 psi</td>
</tr>
<tr>
<td>Measuring ranges</td>
<td>Water</td>
<td>0.4…160 l/h</td>
<td>0.25…40 l/h</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>0.5…5000 l/h</td>
<td>0.5…1000 l/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.007…310 m³/h</td>
<td></td>
</tr>
<tr>
<td>Temperature ranges</td>
<td>Process</td>
<td>-5…+100°C; -23…+212°F</td>
<td>-5…+100°C; -23…+212°F</td>
</tr>
<tr>
<td></td>
<td>Ambient non-Ex</td>
<td>-20…+100°C; -4…+212°F</td>
<td>-20…+100°C; -4…+212°F</td>
</tr>
<tr>
<td></td>
<td>Ambient Ex</td>
<td>-20…+70°C; -4…+128°F</td>
<td>-20…+85°C; -4…+185°F</td>
</tr>
<tr>
<td>Materials</td>
<td>Measuring cone</td>
<td>Borosilicate glass</td>
<td>Borosilicate glass</td>
</tr>
<tr>
<td></td>
<td>Process connection</td>
<td>Stainless steel, brass, PVDF</td>
<td>PVDF</td>
</tr>
<tr>
<td></td>
<td>Approvals</td>
<td>ATEX, NEPSI</td>
<td>ATEX</td>
</tr>
<tr>
<td></td>
<td>Hygiene</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*others on request
Variable area flowmeters

Small and compact dosing meters with valve.

The cost-effective version for the analytical field.

All-purpose flowmeter with various process connections.

For measuring gases with low operating pressures.

For maximum safety requirements.

The cost-effective plastic alternative.

Types

<table>
<thead>
<tr>
<th>Type</th>
<th>For measuring gases with low operating pressures</th>
<th>For maximum safety requirements</th>
<th>The cost-effective plastic alternative</th>
</tr>
</thead>
</table>

Specifications

- **Measuring accuracy (VDI/VDE 3513):**
 - VA45: 2.5%
 - GA24: 1.0%
 - K20: ±2.5% full scale

- **Outputs:**
 - VA45: -
 - GA24: -
 - K20: -

- **Limit switches:**
 - VA45: -
 - GA24: 2
 - K20: -

- **Totaliser:**
 - VA45: -
 - GA24: -
 - K20: -

- **Communication:**
 - VA45: -
 - GA24: -
 - K20: -

- **Protection category:**
 - VA45: -
 - GA24: -
 - K20: -

- **Process connections:**
 - VA45: Threaded, flange, hose connections
 - GA24: Flange DN15...50; ASME1/2...2"
 - K20: Threaded G1/2...

- **Connections:**
 - VA45: -
 - GA24: -
 - K20: -

- **Pressure ratings:**
 - EN 1092-1: PN40
 - ASME B16.5: CL 150

- **Process pressure:**
 - VA45: 1 bar; 14.5 psi
 - GA24: 7...10 bar; 102...145 psi
 - K20: 0...6 bar; 0...72 psi

Materials

- **Measuring cone:**
 - VA45: Borosilicate glass
 - GA24: Borosilicate glass
 - K20: Polysulphone

- **Process connection:**
 - VA45: Stainless steel
 - GA24: Steel plate galvanised and coated
 - K20: Polysulphone

Approvals

- **Ex:**
 - VA45: -
 - GA24: ATEX
 - K20: -

- **Hygiene:**
 - VA45: -
 - GA24: -
 - K20: -

Temperature ranges

- **Process:**
 - VA45: -20...+100°C; -4...+212°F
 - GA24: -40...+120°C; -40...+248°F
 - K20: -20...+100°C; -4...+212°F

- **Ambient non-Ex:**
 - VA45: -20...+100°C; -4...+212°F
 - GA24: -20...+100°C; -4...+212°F
 - K20: -20...+100°C; -4...+212°F

- **Ambient Ex:**
 - VA45: -
 - GA24: -
 - K20: -

Measuring cone

- VA45: Borosilicate glass
- GA24: Borosilicate glass
- K20: Polysulphone

Process connection

- VA45: Stainless steel
- GA24: Steel plate galvanised and coated
- K20: Polysulphone
Process measuring technology

- **OPTISONIC 3400**
 Universal 3-beam device for inline measurement of liquids

- **OPTISONIC 7300**
 Universal 2-beam device for inline measurement of process gases

- **UFM 3030**
 3-beam device for use in custody transfer heat measurement in district heating

- **UFM 530 HT**
 Rugged 2-beam high-temperature device for extreme process conditions

- **OPTISONIC 8300**
 2-beam ultrasonic flowmeter for superheated steam

- **OPTISONIC 6300**
 Flexible clamp-on device with industrial clamp-on mechanism

- **OPTISONIC 6300 P**
 Battery-powered portable clamp-on device
Custody transfer

ALTOSONIC III
Cost-effective 3-beam device to measure light products for custody transfer

ALTOSONIC V
5-beam device for measuring crude oil and crude oil products for custody transfer

ALTOSONIC V12
12-beam device for measuring gas for custody transfer

Ultrasonic flowmeters
User-friendliness redefined

Ultrasonic clamp-on flowmeters: no training, no special tools, no open issues

Whether it’s installation, commissioning, calibration or maintenance, KROHNE is the first manufacturer of ultrasonic clamp-on flowmeters to comprehensively deal with and redefine the topic of user-friendliness.

For the OPTISONIC 6300 ultrasonic flowmeter, for example, it takes just 15 minutes from installation to complete commissioning of the device.

This is due not only to the simple installation using patented clamping devices requiring no special tools but also to the signal measuring transducers pre-installed on the rail at the factory.

And commissioning the OPTISONIC 6300 is as simple as it is safe. After being switched on for the first time, the electronic unit carries out an automatic self test. The preset parameters cover 90% of all applications.

An intelligent installation assistant now guides the user step by step through the program – and simultaneously provides support during optimisation of the flow measurement.
Ultrasonic flowmeters

The measuring principle

KROHNE ultrasonic flowmeters are based on the time-of-flight method. This method consists of two diagonally opposed ultrasonic sensors which function alternately as transmitters and receivers. The sound signal alternately emitted from both is at once accelerated by the flow and slowed down against the flow. The difference in the time the signal requires to travel the measured sections is directly proportional to the mean flow rate from which the volumetric flow can then be calculated. Through the use of several ultrasonic paths, flow profile aberrations can be compensated.

| Transducer A | Transit time 95.4949 µs from A to B |
| Transducer B | Transit time 95.5862 µs from B to A |

- Complete portfolio for liquid, gas and steam applications
- Accuracy and reproducibility regardless of medium properties such as viscosity, temperature, density and electrical conductivity
- Diagnostic and compensation functions for disturbed flow profiles and deposits
- No moving parts or components that protrude into the measuring tube
- Low operating and maintenance costs due to non-wearing parts
- Excellent long-term stability, no recalibration required
- High degree of reliability thanks to redundant measuring paths
- High-temperature versions available
- Large dynamic range
- Bi-directional flow measurement
Standard in the process industry: Benchmark for custody transfer

Whether liquid or gaseous, aggressive or corrosive: KROHNE ultrasonic flowmeters measure a wide range of media.

In 1997, KROHNE introduced the ALTOSONIC V, the first high precision, calibratable ultrasonic flowmeter for the petroleum industry. The ALTOSONIC V’s five measuring paths can perform extremely precise and reproducible measurements regardless of the viscosity of the medium – a real quantum leap.

As the world’s leader in the field of ultrasonic inline flowmeters, our devices are at home in a wide range of industries. Whether it’s measuring cooling water and demineralized water in power plants, controlling dosing and mixing processes in the chemical industry or measuring liquid hydrocarbons in the oil and gas industry, you can put your absolute trust in KROHNE ultrasonic flowmeters in any situation.

Industries:

- Oil and gas
- Petrochemical
- Chemical
- Cold and hot water
- Heating, Ventilation and Air Conditioning (HVAC)
- Power plants
- Semi-conductors
Process measurement

<table>
<thead>
<tr>
<th>Universal 3-beam device for inline measurement of liquids</th>
<th>Universal 2-beam device for inline measurement of process gases</th>
<th>2-beam ultrasonic flowmeter for superheated steam</th>
<th>3-beam device for use in custody transfer heat measurement in district heating</th>
<th>Rugged 2-beam high-temperature device for extreme process conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal converter</td>
<td>Signal converter</td>
<td>Signal converter</td>
<td>Signal converter</td>
<td>Signal converter</td>
</tr>
<tr>
<td>UFC 400</td>
<td>GFC 300</td>
<td>UFC 300</td>
<td>UFC 030</td>
<td>UFC 030</td>
</tr>
<tr>
<td>Measuring accuracy</td>
<td>Measuring accuracy</td>
<td>Measuring accuracy</td>
<td>Measuring accuracy</td>
<td>Measuring accuracy</td>
</tr>
<tr>
<td>Volume flow: DN100; 4": < ± 1.5% of measured value, DN150...600; 6"...24": < ± 1% of measured value</td>
<td>Air calibration (atmospheric): 2...3": ±1.5%; 4...24": ±1%</td>
<td>Super heated steams (>±15°C; +59°F super-heat), high temperature gases</td>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
</tr>
<tr>
<td>Process conditions</td>
<td>Process conditions</td>
<td>Process conditions</td>
<td>Process conditions</td>
<td>Process conditions</td>
</tr>
<tr>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
<td>Process gases</td>
<td>Super heated steams (>±15°C; +59°F super-heat), high temperature gases</td>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
</tr>
<tr>
<td>Outputs</td>
<td>Outputs</td>
<td>Outputs</td>
<td>Outputs</td>
<td>Outputs</td>
</tr>
<tr>
<td>Current, pulse, status</td>
</tr>
<tr>
<td>Inputs</td>
<td>Inputs</td>
<td>Inputs</td>
<td>Inputs</td>
<td>Inputs</td>
</tr>
<tr>
<td>Binary, mA (temp., pressure)</td>
<td>2 x 4...20 mA, active, binary</td>
<td>Binary, mA (temp., pressure)</td>
<td>Binary, mA (temp., pressure)</td>
<td>Binary, mA (temp., pressure)</td>
</tr>
<tr>
<td>Communication</td>
<td>Communication</td>
<td>Communication</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>HART®, PROFIBUS®, FF, Modbus</td>
<td>HART®, Modbus, FF</td>
<td>HART®, Modbus, FF</td>
<td>HART®</td>
<td>HART®</td>
</tr>
<tr>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
</tr>
<tr>
<td>100...240 VAC; 24 VAC/DC</td>
<td>85...250 VAC; 11...31 VDC; 20.5...26 VAC/DC</td>
<td>100...230 VAC; 24 VAC/DC</td>
<td>100...240 VAC; 24 VAC/DC</td>
<td>100...240 VAC; 24 VAC/DC</td>
</tr>
<tr>
<td>Protection category: Compact (C) Field (F) Wall (W)</td>
</tr>
<tr>
<td>IP47; NEMA6, IP65; NEMA4, 4X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Measuring sensor</td>
<td>Measuring sensor</td>
<td>Measuring sensor</td>
<td>Measuring sensor</td>
<td>Measuring sensor</td>
</tr>
<tr>
<td>OPTISONIC 3000</td>
<td>OPTISONIC 7000</td>
<td>OPTISONIC 8000</td>
<td>UFS 3000</td>
<td>UFS 500 HT</td>
</tr>
<tr>
<td>Process connections</td>
<td>Process connections</td>
<td>Process connections</td>
<td>Process connections</td>
<td>Process connections</td>
</tr>
<tr>
<td>EN 1092-1</td>
<td>DN25...3000; PN10...100</td>
<td>DN50...600; PN10, 16, 40</td>
<td>DN100...600; PN16...160 or flangeless</td>
<td>DN25...3000; PN10...100</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>1...120°; CL 150...1500</td>
<td>2...24°; CL 150...900</td>
<td>4...24°; CL 150...2500 or flangeless</td>
<td>DN25...80, 100...150, 200...300; PN10, 16, 40</td>
</tr>
<tr>
<td>Temperature ranges</td>
<td>Temperature ranges</td>
<td>Temperature ranges</td>
<td>Temperature ranges</td>
<td>Temperature ranges</td>
</tr>
<tr>
<td>Process</td>
<td>-200...+250°C; -328...+482°F</td>
<td>-40...+180°C; -40...+356°F</td>
<td>-25...+540°C; -13...+1004°F, higher on request</td>
<td>-25...+180°C; -13...+356°F</td>
</tr>
<tr>
<td>Ambient (incl. converter)</td>
<td>-40...+65°C; -40...+149°F</td>
<td>-40...+65°C; -40...+149°F</td>
<td>-40...+65°C; -40...+149°F</td>
<td>-40...+65°C; -40...+149°F</td>
</tr>
<tr>
<td>Materials</td>
<td>Materials</td>
<td>Materials</td>
<td>Materials</td>
<td>Materials</td>
</tr>
<tr>
<td>Measuring tube, flange</td>
<td>Steel, stainless steel, Hastelloy® C4, duplex</td>
<td>Steel, stainless steel, Hastelloy® C, duplex</td>
<td>Carbon steel, high temperature steel on request</td>
<td>Steel, stainless steel, stainless steel, steel, duplex, Inconel®</td>
</tr>
<tr>
<td>Protection category</td>
<td>Protection category</td>
<td>Protection category</td>
<td>Protection category</td>
<td>Protection category</td>
</tr>
<tr>
<td>Measuring sensor</td>
<td>IP65, 47, 68; NEMA4, 4X, 6, 6P</td>
<td>IP67; NEMA6</td>
<td>IP67; NEMA6</td>
<td>IP65, 47, 68; NEMA4, 4X, 6, 6P</td>
</tr>
<tr>
<td>Approvals</td>
<td>Approvals</td>
<td>Approvals</td>
<td>Approvals</td>
<td>Approvals</td>
</tr>
<tr>
<td>Ex</td>
<td>ATEX, IEC-EX, FM, CSA, NEPSI</td>
<td>ATEX, NEPSI, [FM, CSA pending]</td>
<td>ATEX, IEC, NEPSI</td>
<td>ATEX, FM, CSA, NEPSI</td>
</tr>
<tr>
<td>Custody transfer</td>
<td>-</td>
<td>-</td>
<td>MID MI-004</td>
<td>-</td>
</tr>
</tbody>
</table>
Custody transfer

<table>
<thead>
<tr>
<th>Flexible clamp-on device with industrial clamp-on mechanism</th>
<th>Battery-powered portable clamp-on device</th>
<th>Cost-effective 3-beam device to measure light products for custody transfer</th>
<th>12-beam device for measuring of gases for custody transfer</th>
<th>5-beam device for measuring crude oil and crude oil products for custody transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTISONIC 6300</td>
<td>OPTISONIC 6300 P</td>
<td>ALTOSONIC III</td>
<td>ALTOSONIC V12</td>
<td>ALTOSONIC V</td>
</tr>
<tr>
<td>UFC 300</td>
<td>UFC 300 P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±1.0% of measured value</td>
<td>±1.0% of measured value</td>
<td>±0.2% of measured value for 20.000<RE<50.000; 0.15% of measured value for RE>50.000</td>
<td>±0.2% of measured value, ±0.1% after linearisation</td>
<td>±0.15% of measured value, turndown ratio 1:10; ±0.20% of measured value, turndown ratio 1:50</td>
</tr>
<tr>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
<td>Liquids with max. 5% solid content and max. 2% gas content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current, pulse, status</td>
<td>Current, pulse, status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary</td>
<td>2 x 0(4…20 mA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART®</td>
<td>USB slave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85…250 VAC; 20.5…26 VAC/DC</td>
<td>Battery power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP66, 67; NEMA4, 4X, 6 IP65; NEMA4, 4X</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTISONIC 6000</td>
<td>OPTISONIC 6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15…4000</td>
<td>DN15…4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2…160”</td>
<td>1/2…160”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40…+200°C; -40…+392°F</td>
<td>-40…+200°C; -40…+392°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40…+60°C; -40…+140°F</td>
<td>-20…+55°C; -4…+131°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor in aluminium, stainless steel</td>
<td>Sensor in aluminum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP67; NEMA6</td>
<td>IP67; NEMA6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATEX, FM, CSA, NEPSI</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTOSONIC III</td>
<td>ALTOSONIC V12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4 x digital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Binary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100…240 VAC; 24 VAC/DC</td>
<td>24 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x RS485</td>
<td>Modbus 2 x RS485</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP67; NEMA6</td>
<td>IP66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>IP65, 67; NEMA4, 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTOSONIC V</td>
<td>ALTOSONIC III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2…40”; CL 150…1500</td>
<td>4…64”; CL 150…2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-200…+250°C; -328…+428°F</td>
<td>-40…+100°C; -40…+212°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40…+70°C; -13…+149°F</td>
<td>-40…+65°C; -40…+149°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor in aluminium, stainless steel</td>
<td>Stainless steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP67; NEMA6</td>
<td>LT carbon steel, stainless steel and duplex optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATEX, FM, CSA, NEPSI</td>
<td>ATEX, FM, CSA, IECEx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>ATEX, FM, CSA,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MID MI-005, Gosstandard, OIML R-117-1 class 0.3, API</td>
<td>OIML R137 class 0.5, MID, AOA 9, ISO 17089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>MID MI-005, Gosstandard, OIML R-117-1 class 0.3, API</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The modular product line

Converters

MFC 300 R
Rack-mounted

MFC 300 W
Wall-mounted

MFC 300 F/MFC 400 F
Field housing

MFC 300 C/MFC 400 C
General purpose

Flow sensors

OPTIMASS 1000
The standard device with an excellent price-performance ratio

OPTIMASS 2000
The first choice for bulk flows for custody transfer

OPTIMASS 3000
Suitable for extremely low flow rates

OPTIMASS 7000
High-end solution featuring a single straight measuring tube
Mass flowmeters

The specialists

OPTIMASS 6000
The standard high-performance meter with Entrained Gas Management™ for the process industry

OPTIGAS 4010
Specially designed for CNG in dispensing systems

OPTIBATCH 4011
Specially designed for linear and rotating filling machines
Mass flowmeters:
A solution for all process applications

When it comes to selecting a flowmeter for your application, the OPTIMASS range covers all bases. Our engineers have developed a family of meters from small to large, for high pressure, cryogenic temperatures and high temperatures.

All meters have been designed to reduce constraints on the user with regards to installation – simply follow good engineering practice to obtain the desired results. Another highlight is the diagnostics platform, which is unique in this class of device. It not only monitors the device itself but also the process environment.

Within the system, the diagnostics software monitors the process temperature and a series of auxiliary values such as the driver energy, in order to ultimately confirm the condition of the process medium. OPTIMASS can even generate intelligent warning messages when a certain proportion of gas bubbles or solids is exceeded, providing valuable information about the process itself.
The measuring principle

Mass flowmeters work on the Coriolis principle. The mass flow rate of liquids and gases can be calculated from the deformation of the measuring tube caused by the flow. The media density can also be derived from the resonance frequency of the oscillating tube. Two sensor coils are used to calculate the Coriolis effect. If there is no flow, both sensors record the same sinusoidal signal. Once the flow begins, the Coriolis force acts on the flowing mass particles of the medium and causes the measuring tube to deform, resulting in a phase shift between the sensor signals. The sensors measure the phase shift of the sinusoidal vibrations. This phase shift is directly proportional to the mass flow rate.

Mass flowmeters

The measuring principle

Mass flowmeters work on the Coriolis principle. The mass flow rate of liquids and gases can be calculated from the deformation of the measuring tube caused by the flow. The media density can also be derived from the resonance frequency of the oscillating tube. Two sensor coils are used to calculate the Coriolis effect. If there is no flow, both sensors record the same sinusoidal signal. Once the flow begins, the Coriolis force acts on the flowing mass particles of the medium and causes the measuring tube to deform, resulting in a phase shift between the sensor signals. The sensors measure the phase shift of the sinusoidal vibrations. This phase shift is directly proportional to the mass flow rate.
Just how accurate and reliable a mass flowmeter actually is becomes obvious when constant parameters such as medium, temperature or pressure undergo sudden changes. The OPTIMASS series from KROHNE sets the standard. With high performance straight and bent tube designs.

KROHNE offers superior straight and bent tube design mass flowmeters, so the customer now can choose the best meter for their application. We offer a unique straight tube design for minimal pressure drop, highly viscous and slurry applications. The superior bent tube design is suitable for cryogenic, high temperature applications and extremely high pressures.

The MFC 400 converter offers excellent zero stability, advanced density and concentration measurement and a high performance with air entrainment. With new Entrained Gas Management™ the meter is now able to measure from 0 % to 100 % gas entrainment.

Industries:
- Chemical
- Pharmaceutical
- Food and beverage
- Oil and gas
- Petrochemical
- Pulp and paper
- Mining and minerals
- Power plants
- Water and wastewater
- Marine

OPTIMASS 2400 – Minimal installation footprint
The modular product line

<table>
<thead>
<tr>
<th>Device</th>
<th>OPTIMASS 1000</th>
<th>OPTIMASS 2000</th>
<th>OPTIMASS 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL 150, 300, 600</td>
<td>OPTIMASS 1010</td>
<td>OPTIMASS 2000</td>
<td>OPTIMASS 3010</td>
</tr>
<tr>
<td>CL 150, 300, 600, 900, 1500</td>
<td>CL 150, 300, 600</td>
<td>CL 150, 300, 600</td>
<td>CL 150, 300, 600</td>
</tr>
<tr>
<td>DN8…100 (150-250 pending) DN6…80 DN8…15 DN15 1/2…4” (6-12” pending) 1/2…4”</td>
<td>DN8…100 (150-250 pending) DN6…80 DN8…15 DN15 1/2…4” (6-12” pending) 1/2…4”</td>
<td>DN8…100 (150-250 pending) DN6…80 DN8…15 DN15 1/2…4” (6-12” pending) 1/2…4”</td>
<td>DN8…100 (150-250 pending) DN6…80 DN8…15 DN15 1/2…4” (6-12” pending) 1/2…4”</td>
</tr>
<tr>
<td>Modbus</td>
<td>Modbus</td>
<td>Modbus</td>
<td>Modbus</td>
</tr>
<tr>
<td>12 VDC</td>
<td>12 VDC</td>
<td>12 VDC</td>
<td>12 VDC</td>
</tr>
<tr>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
</tr>
<tr>
<td>3/4”</td>
<td>3/4”</td>
<td>3/4”</td>
<td>3/4”</td>
</tr>
<tr>
<td>PN16, 40, 63, 100, 160</td>
<td>PN40, 63, 100</td>
<td>PN20, NE40</td>
<td>PN20, NE40</td>
</tr>
<tr>
<td>12 VDC</td>
<td>12 VDC</td>
<td>12 VDC</td>
<td>12 VDC</td>
</tr>
<tr>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
</tr>
<tr>
<td>Duplex stainless steel, Hastelloy® C22,</td>
</tr>
<tr>
<td>1/2…4”</td>
<td>1/2…4”</td>
<td>1/2…4”</td>
<td>1/2…4”</td>
</tr>
<tr>
<td>-40…+130°C; -49…+266°F</td>
<td>-40…+130°C; -49…+266°F</td>
<td>-40…+130°C; -49…+266°F</td>
<td>-40…+130°C; -49…+266°F</td>
</tr>
<tr>
<td>-40…+65°C; -40…+149°F</td>
<td>-40…+65°C; -40…+149°F</td>
<td>-40…+65°C; -40…+149°F</td>
<td>-40…+65°C; -40…+149°F</td>
</tr>
<tr>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
</tr>
<tr>
<td>IP20; NEMA1</td>
<td>IP20; NEMA1</td>
<td>IP20; NEMA1</td>
<td>IP20; NEMA1</td>
</tr>
<tr>
<td>IP65; NEMA4, 4X</td>
<td>IP65; NEMA4, 4X</td>
<td>IP65; NEMA4, 4X</td>
<td>IP65; NEMA4, 4X</td>
</tr>
<tr>
<td>IP66, 67; NEMA4, 4X, 6</td>
</tr>
<tr>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
</tr>
<tr>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
</tr>
<tr>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
<td>20.5…26 VAC/DC</td>
</tr>
</tbody>
</table>

Measuring accuracy

<table>
<thead>
<tr>
<th>Device</th>
<th>OPTIMASS 1000</th>
<th>OPTIMASS 2000</th>
<th>OPTIMASS 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid: ±0.15%</td>
<td>Liquid: ±0.1%</td>
<td>Liquid: ±0.1%</td>
<td></td>
</tr>
<tr>
<td>gas: 0.35% density: ±2 kg/m³</td>
<td>gas: 0.35% density: ±1 kg/m³</td>
<td>gas: 0.35% density: ±2 kg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Device</th>
<th>OPTIMASS 1000</th>
<th>OPTIMASS 2000</th>
<th>OPTIMASS 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, pulse/frequency, status</td>
<td>Current, pulse/frequency, status</td>
<td>Current, pulse/frequency, status</td>
<td></td>
</tr>
</tbody>
</table>

Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>OPTIMASS 1000</th>
<th>OPTIMASS 2000</th>
<th>OPTIMASS 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>Binary</td>
<td>Binary</td>
<td></td>
</tr>
</tbody>
</table>

Power supply

<table>
<thead>
<tr>
<th>Device</th>
<th>OPTIMASS 1000</th>
<th>OPTIMASS 2000</th>
<th>OPTIMASS 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART®, FF, PA, DP, Modbus</td>
<td>HART®, FF, PA, DP, Modbus</td>
<td>HART®, FF, PA, DP, Modbus</td>
<td></td>
</tr>
</tbody>
</table>

Protection category

<table>
<thead>
<tr>
<th>Device</th>
<th>Compact (C) Field (F) Wall (W) Rack (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMASS 1000</td>
<td>OPTIMASS 2000</td>
</tr>
<tr>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
</tr>
</tbody>
</table>

Measuring sensor

<table>
<thead>
<tr>
<th>Device</th>
<th>OPTIMASS 1000</th>
<th>OPTIMASS 2000</th>
<th>OPTIMASS 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMASS 1000</td>
<td>OPTIMASS 2000</td>
<td>OPTIMASS 3000</td>
<td></td>
</tr>
<tr>
<td>OPTIMASS 1000</td>
<td>OPTIMASS 2000</td>
<td>OPTIMASS 3000</td>
<td></td>
</tr>
</tbody>
</table>

Nominal sizes

<table>
<thead>
<tr>
<th>Device, EN 1092-1</th>
<th>DN15…50</th>
<th>DN100…250</th>
<th>DN1…4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection EN 1092-1</td>
<td>DN15…100</td>
<td>DN100…300</td>
<td>DN15</td>
</tr>
<tr>
<td>Device, ASME B16.5</td>
<td>1/2…2”</td>
<td>4…10”</td>
<td>1/25…4/25”</td>
</tr>
<tr>
<td>Connection ASME B16.5</td>
<td>1/2…4”</td>
<td>4…12”</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Secondary pressure containment

<table>
<thead>
<tr>
<th>Device</th>
<th>100 bar; 1450 psi</th>
<th>40 bar; 580 psi</th>
<th>30 bar; 435 psi</th>
</tr>
</thead>
</table>

Process temperature

<table>
<thead>
<tr>
<th>Device</th>
<th>-40…+130°C; -49…+266°F</th>
<th>-40…+130°C; -49…+266°F</th>
<th>-40…+130°C; -49…+266°F</th>
</tr>
</thead>
</table>

Sensor materials

<table>
<thead>
<tr>
<th>Device</th>
<th>Duplex stainless steel</th>
<th>Duplex stainless steel, super duplex steel</th>
<th>Stainless steel, Hastelloy® C22</th>
</tr>
</thead>
</table>

Protection category sensor

<table>
<thead>
<tr>
<th>Device</th>
<th>IP67; NEMA4X</th>
<th>IP67; NEMA4X</th>
<th>IP67; NEMA4X</th>
</tr>
</thead>
</table>

Ex-Approvals

<table>
<thead>
<tr>
<th>Device</th>
<th>ATEX, FM, CSA, NEPSI, IECEx</th>
<th>ATEX, FM, CSA, NEPSI, IECEx</th>
<th>ATEX, FM, CSA, NEPSI</th>
</tr>
</thead>
</table>

Ex-Approvals

<table>
<thead>
<tr>
<th>Device</th>
<th>ATEX, FM, CSA, NEPSI</th>
<th>ATEX, FM, CSA, NEPSI</th>
</tr>
</thead>
</table>

Custody transfer

<table>
<thead>
<tr>
<th>Device</th>
<th>OIML R117-1, Inmetro, NTEP, MID 2004/22/EC</th>
<th>-</th>
</tr>
</thead>
</table>

Medium

<table>
<thead>
<tr>
<th>Device</th>
<th>Water</th>
<th>Other liquids</th>
<th>Slurries</th>
<th>Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
The specialists

<table>
<thead>
<tr>
<th>The standard high-performance meter with Entrained Gas Management™ for the process industry</th>
<th>High-end solution featuring a straight single measuring tube</th>
<th>Specially designed for linear and rotating filling machines</th>
<th>Specially designed for CNG in dispensing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMASS 7010</td>
<td>Liquid: ±0.1%</td>
<td>Liquid: mass: ±0.15%</td>
<td>Liquid: ±0.5% per batch</td>
</tr>
<tr>
<td>-</td>
<td>gas: 0.35%</td>
<td>volume: ±0.2%</td>
<td>gas: ±0.5% per batch</td>
</tr>
<tr>
<td>-</td>
<td>density: ±2 kg/m³ [±0.5 kg/m³]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>Modbus [configuration]</td>
<td>Modbus</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>24 VDC</td>
<td>12 VDC</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
</tr>
</tbody>
</table>

OPTIMASS 6400

- Liquid: ±0.1%, ±0.05% optional gas: 0.35% density: ±1 kg/m³ [±0.2 kg/m³]
- Current, pulse/frequency, status: Binary
- HART®, FF, PA, DP, Modbus
- IP67; NEMA4X

OPTIMASS 7000 + MFC 400

- Liquid: ±0.1% gas: 0.35% density: ±2 kg/m³ [±0.5 kg/m³]
- Current, pulse/frequency, status: Binary
- HART®, FF, PA, DP, Modbus
- IP67; NEMA4X

OPTIMASS 6000

- DN8…100 [150-250 pending]
- DN10…100 [150-300 pending]
- 1/2...4" [6-10" pending]
- 1/2...4" [6-12" pending]
- PN16, 40, 63, 100, 160
- CL150, 300, 600, 900, 1500
- - 100 bar; 1450 psi
- 5…1500000 kg/h 9.5…560000 kg/h
- -200...+400°C, -328...752°F -40...+150°C; -40...+302°F
- -40...+65°C; -40...+149°F -40...+65°C; -40...+149°F
- Stainless steel , Hastelloy® C22, duplex steel
- - Stainless steel, Hastelloy® C22, titanium, tantalum
- IP67; NEMA4X
- ATEX, cFMus, IECEx, NEPSI, IECEx
- 3A, EHEDG, NACE
- MID 2004/22/EC, OIML
- x x x x

OPTIMASS 7000

- DN6...80
- DN10...100
- 1/4" 1/3" 1/2...4" 1/4" 1/2...4"
- - - -
- PN40, 63, 100
- CL150, 300, 600
- - 100 bar; 1450 psi
- 5…1500000 kg/h 9.5…560000 kg/h
- -200...+400°C, -328...752°F -40...+150°C; -40...+302°F
- -40...+65°C; -40...+149°F -40...+65°C; -40...+149°F
- Stainless steel , Hastelloy® C22, duplex steel
- - Stainless steel, Hastelloy® C22, titanium, tantalum
- IP67; NEMA4X
- ATEX, cFMus, IECEx, NEPSI, IECEx
- 3A, EHEDG, NACE
- MID 2004/22/EC, OIML
- x x x x

OPTIBATCH 4011

- Liquid: mass: ±0.15% volume: ±0.2%
- Pulse/frequency: Binary
- HART®, FF, PA, DP, Modbus
- IP67; NEMA4X

OPTIBATCH 4010

- Liquid: mass: ±0.15% volume: ±0.2%
- Pulse/frequency: Binary
- HART®, FF, PA, DP, Modbus
- IP67; NEMA4X

OPTIBATCH 4000

- Process pressure: 10 bar; 145 psi
- Process pressure: 350 bar; 5076 psi static, 300 bar; 4351 psi cyclical
- 6...4320 kg/h 60...4200 kg/h
- 0...+100°C; +32...+212°F -40...+93°C; -40...+200°F
- -40...+55°C; -40...+131°F -40...+55°C; -40...+131°F
- Stainless steel
- Stainless steel
- IP67; NEMA4X
- ATEX, NEPSI
- 3A, ASME Bioprocessing, EHEDG
- PTB, OIML R139 [pending]
OPTISWIRL 4070 F flange
OPTISWIRL 4070 F sandwich
Remote version with field housing
converter with connecting
cable up to 15 m / 49 ft

OPTISWIRL 4070 C flange
OPTISWIRL 4070 C sandwich
The universal device with standard integrated
temperature compensation for saturated
steam and optionally pressure compensation
for superheated steam, gases, wet gases

OPTISWIRL 4070 Dual version
With two independent measuring
sensors and two signal converters
for multiproduct pipelines,
redundant measurement and
increased safety demands

Stainless steel centering
rings for easy mounting
Vortex flowmeters

OPTISWIRL 4200 C flange
Advanced signal filter technology
AVFD complements the high accurate measurement with integrated density compensation

OPTISWIRL 4200 C sandwich
All advantages of the OPTISWIRL 4200 in a space-saving sandwich design; centering rings guarantee an easy installation without any offset

OPTISWIRL 4200 Dual version
With two independent measuring sensors and two signal converters for multiproduct pipelines, redundant measurement and increased safety demands

OPTISWIRL 4200 F flange
OPTISWIRL 4200 F sandwich
Remote version with field housing converter with connection cable up to 50 m / 164 ft

OPTISWIRL 4200 C 1R / 2R
Integrated reduction of nominal diameter for space-saving and economic installations and large measuring spans

SIL2
All OPTISWIRL 4200 versions available for SIL 2 applications
The measuring principle

The function of vortex flowmeters is based on the principle of the Karman vortex street: Opposing vortices form behind an object in a stream. The measuring tube contains a bluff body, behind which vortex shedding occurs. The frequency of the vortex shedding is proportional to the flow rate. The shedded vortices are picked up and counted as pressure surges by a piezo crystal in the sensor.
Allrounder with integrated pressure and temperature compensation

Vortex flowmeters are suitable for a wide range of media. This is particularly true of the KROHNE OPTISWIRL: It measures both conducting and non-conducting liquids as well as all industrial gases. It also measures saturated steam and superheated steam, compressed air and nitrogen, liquefied gas and flue gas, demineralized water and boiler feed water, solvents and heat transfer oil.

The KROHNE OPTISWIRL even masters fluctuating pressures and temperatures thanks to integrated pressure and temperature compensation.

The collection of the volume flow and the process data at only one point ensures accurate density compensation and combines high system accuracy with low investment costs. Internal gross and net heat calculation complete the device to be a reliable partner for advanced energy management.

Highest reliability and lowest probability of failure: The new OPTISWIRL 4200 was designed for safety related applications right from the start. Both its hardware and its software are developed to meet the strict requirements of SIL 2 safety functions. On demand as well as continuously!
| **Signal converter** | **Measuring accuracy** | **Repeatability** | **Product temperature** | **Outputs** | **Input** | **Communication** | **Power supply (Non Ex)** | **Protection category** | **Housing material** | **Measuring sensor** | **Process connections** | **Temperature ranges** | **Materials** | **Measuring sensor** | **Sensor seal** | **Protection category** | **Measuring sensor** | **Reduction of nominal diameter** | **Ex** | **Functional Safety** |
|---------------------|-----------------------|-------------------|-------------------------|-------------|----------|-------------------|-------------------------|------------------------|-----------------|---------------------|------------------------|---------------------|--------------|-------------------|------------------|----------------------|-----------------|-------------------|
| VFC 070 C/F | Re > 20000 ±0.75% for liquids, Re > 20000 ±1% for gases and steam 10000 < Re < 20000 ±2% for liquids, gases and steam | ±0.1% | -40…+240°C; -40…+464°F mA, pulse | mA | - | HART® | 14…30 VDC | IP66/67, optional IP66/68 | Aluminum | VFM 4000 flange | EN 1092-1 | DN15…300; PN16, 25, 40, 63, 100 | -40…+240°C; -40…+464°F | 1.4404/316L, Hastelloy® C22 | 1 or 2 steps reduced bore meter | - | SIL 2 |
| VFC 200 C/F | Re > 20000 ±0.75% for liquids, Re > 20000 ±1% for gases and steam 10000 < Re < 20000 ±2% for liquids, gases and steam | ±0.1% | -40…+240°C; -40…+464°F mA, pulse/frequency/status/limit switch | mA | - | HART®, PA, FF | 12…30 VDC | IP66/67 | Aluminum, stainless steel | VFM 4000 flange | ASME B16.5 | 1/2…12”; CL 150, 300, 600 | -40…+85°C; -40…+185°F | 1.4435/316L, Hastelloy® C276 | 1 or 2 steps reduced bore meter | - | - |
| VFC 070 C/F | Re > 20000 ±0.75% for liquids, Re > 20000 ±1% for gases and steam 10000 < Re < 20000 ±2% for liquids, gases and steam | ±0.1% | -40…+240°C; -40…+464°F mA, pulse | mA | - | HART® | 14…36 VDC | IP66/67, optional IP66/68 | Aluminum | VFM 4000 sandwich | ASME B16.5 | 1/2…4”; CL 150, 300, 600 | -40…+65°C; -40…+149°F | 1.4435/316L, Hastelloy® C276 | - | - |
Functional Safety

- **SIL 2**

Approvals

- ATEX, FM (USA and Canada), IECEx, NEPSI
- ATEX, FM (USA and Canada), IECEx, NEPSI

Measuring sensor

- **Nominal diameter**
 - Reduction of
 - Measuring sensor
 - Approvals
 - Ex
 - Functional Safety

Measurement ranges

- **Ambient (Ex)**
 - Temperature ranges
 - Process
 - Ambient (Non Ex)
 - Ambient (Ex)

Process connections

- **ASME B16.5**
 - DN15…300; PN16, 25, 40, 63, 100
 - DN15…40; CL 150, 300, 600

Materials

- **Sensor seal**
 - Measuring sensor
 - Protection category

Functional Safety

- **Housing material**
 - Protection category
 - Power supply (Ex)
 - Power supply (Non Ex)

Communication

- **HART®, PA, FF**
 - mA, pulse/frequency/status/limit switch
 - mA

Outputs

- mA, pulse
- mA, pulse/frequency/status/limit switch
- mA, pulse/frequency/status/limit switch

Measuring accuracy

- **FAD**
 - ±0.1%
 - ±0.1%
 - ±0.1%

Repeatability

- **Re**
 - > 20000 ±0.75% for liquids
 - > 20000 ±1% for gases and steam
 - > 20000 ±1% for gases and steam

Measuring accuracy

- **Gross heat**
 - ±0.1%
 - ±0.1%
 - ±0.1%

Gross heat

- **Gross and net heat calculation**
 - FAD
 - FAD
 - FAD

Signal converter

- **VFC 200 C/F**
- **VFC 070**
- **VFC 200**

<table>
<thead>
<tr>
<th>VFC 200 C/F</th>
<th>VFC 070</th>
<th>VFC 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring accuracy</td>
<td>Re > 20000 ±0.75% for liquids</td>
<td>Re > 20000 ±0.75% for liquids</td>
</tr>
<tr>
<td></td>
<td>Re > 20000 ±1% for gases and steam</td>
<td>Re > 20000 ±1% for gases and steam</td>
</tr>
<tr>
<td>Process connections</td>
<td>DN15…100; EN1092-1</td>
<td>DN15…100; EN1092-1</td>
</tr>
<tr>
<td>Temperature ranges</td>
<td>-40…+240°C; -40…+464°F</td>
<td>-40…+240°C; -40…+464°F</td>
</tr>
<tr>
<td>Measuring sensor</td>
<td>1.4404/316L, Hastelloy® C22</td>
<td>1.4404/316L, Hastelloy® C22</td>
</tr>
<tr>
<td>Measuring sensor</td>
<td>1 or 2 steps reduced bore meter</td>
<td>1 or 2 steps reduced bore meter</td>
</tr>
<tr>
<td>Approvals</td>
<td>ATEX, FM (USA and Canada), IECEx</td>
<td>ATEX, FM (USA and Canada), IECEx</td>
</tr>
</tbody>
</table>

OPTISWIRL 4200 C/F sandwich

- All advantages of the OPTISWIRL 4200 in a space-saving sandwich design; centering rings guarantee an easy installation without any offset.

OPTISWIRL 4070 Dual version

- With two independent measuring sensors and two signal converters for multiproduct pipelines, redundant measurement and increased safety demands.

OPTISWIRL 4200 Dual version

- With two independent measuring sensors and two signal converters for multiproduct pipelines, redundant measurement and increased safety demands.
The modular product line

Pressure transmitters

OPTIBAR DP 7060
Differential pressure transmitter for all flow applications, already with integrated absolute pressure measurement

Primary elements

OPTIBAR OP 1000
Standard orifice plates with single bore tapping for cost-effective flow measurement

OPTIBAR OP 1200
Robust split ring orifice plates with interchangeable orifice plate

OPTIBAR PT 2000
Averaging pitot tubes for energy-efficient flow measurement with lowest pressure loss
Differential pressure flow measurement

Calibrated meter runs

OPTIBAR MR 1000
Calibrated meter run with orifice plate for nominal sizes DN 15...50 / 3/4...2”

OPTIBAR MR 2000
Calibrated meter run with averaging pitot tube for nominal sizes DN 15...50 / 3/4...2”

Flow computers

OPTIBAR FC 1000
Flow computer for pressure and temperature compensated gas and steam measurement and gross/net energy calculation

Accessories

Accessories for safe and easy installation of pressure transmitters in the process:
- Manometer and barstock valves, 3-/5-way valve manifolds, also for steam and high temperature applications
- Condensate pots for steam applications
- Fittings, seals, blind-plugs, oval flange adapter and gauge snubber

Differential pressure flow measurement
Differential pressure flow measurement

The measuring principle

For over 100 years, the process industry has used the Differential Pressure (DP) flow measurement method to determine the volume or mass of liquids, gases and steam in commercial use.

With DP, pressure is measured at two points across a restriction in the line – for example, a primary element. Using the Bernoulli equation, the difference in pressure between these two points indicates flow velocity and, because the pipe size is known, a volume flow rate can be calculated.

Today, DP is being constantly improved and adapted to meet the requirements of modern processes, and KROHNE is helping to lead the way.

Pitot tube

The pitot tube offers you a simple, cost-efficient flow measurement solution which can be trusted to deliver accurate results over the long term. It is an excellent alternative to orifice plates for:

- Applications that require a low pressure loss
- Retrofitting of existing pipelines with flow measurement
- Line sizes >DN 300/12"
- Low pressure gases

A pitot tube consisting of two chambers is placed in the pipe transversely to the direction of the flow. An upstream chamber faces the flow and a downstream chamber is placed at the back of the probe.

The impact of the medium against the upstream chamber causes an overpressure that adds to the static pressure in the pipe. Depending on its shape, a negative pressure builds up in the downstream chamber. Both pressures are transmitted to a differential pressure transmitter that converts the difference between the two chambers into an output signal.

Flow velocity is calculated using the differential pressure and medium density \(v = k \times \sqrt{2 \times \Delta p/p} \). Volume flow is calculated from the flow velocity and the crosssection area \(qv = v \times A \).
Orifice plates

Orifice plates work by restricting the flow of the liquid, gas or steam being monitored. According to the Bernoulli equation, the flow velocity increases at the restriction, and the static pressure drops. The difference in pressure at the measuring point is a measure for the flow velocity of the medium.

Volume flow is calculated from the flow velocity and the cross-section area: \(q_v = v \times A \)

The diameter ratio \(\beta = d/D \) is determined for each measuring point, allowing each one to be optimised for specific requirements, including short inlet/outlet, low pressure loss and instances of small overall uncertainty.

Orifice plate primary elements are worldwide standardised according to ISO 5167.
Introducing OPTIBAR differential pressure flow measurement products

Today, in over 40 % of all flow applications, differential pressure meters are still the first choice. With the release of the OPTIBAR series, KROHNE is extending its process instrumentation portfolio to meet this demand.

The range includes a variety of modular transmitters, application specific diaphragm seals, primary elements, accessories, valves and manifolds. This offers you the option to buy, from one source, single DP pressure transmitters as well as complete DP flow measuring points, with matched, preconfigured components, (wet) calibrated and ready to install.

Modular design concept
Complete measuring points

KROHNE will provide you with all necessary instruments for your flow measurement point: from primary elements, up to a flow computer for gas, liquid and steam calculations.

For measurement uncertainties due to changing process conditions, the flow computer holds appropriate algorithms for all primary elements. By adding temperature and pressure sensors, density compensation or gross and net energy calculations are also possible.

When commissioning a complete measuring point from us, investment costs like primary element design, component assembly up to pre-parametrisation of the differential pressure transmitter and flow computer are all less. And there are no additional costs for piping, installation and testing at the measuring point.

KROHNE’s approach to design also guarantees that up to 70 % of potential leakage points will be eliminated, cutting service and maintenance costs.

Industries:

- Oil and gas
- Chemical
- Petrochemical
- Heating, Ventilation and Air Conditioning (HVAC)
- Energy
- Metal and mining
- Food and beverages
Differential Pressure Flow Measurement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>OPTIBAR PT 2000</td>
<td>OPTIBAR OP 1000</td>
<td>OPTIBAR OP 1200</td>
</tr>
<tr>
<td>Medium</td>
<td>Gas, liquid, steam</td>
<td>Gas, liquid, steam</td>
<td>Gas, liquid, steam</td>
</tr>
<tr>
<td>Type</td>
<td>Compact, remote</td>
<td>Compact, remote</td>
<td>Compact, remote</td>
</tr>
<tr>
<td>Accuracy</td>
<td>< ±1% uncalibrated; < ±0.5% calibrated</td>
<td>< ±0.6…0.8%</td>
<td>< ±0.6…0.8%</td>
</tr>
<tr>
<td>Turn down ration (calibrated)</td>
<td>1:5 (1:7)</td>
<td>1:3 (1:6)</td>
<td>1:3 (1:6)</td>
</tr>
<tr>
<td>Pressure loss</td>
<td>40…95%</td>
<td>40…95%</td>
<td>40…95%</td>
</tr>
<tr>
<td>Max. pressure</td>
<td>PN40</td>
<td>PN40; PN63; PN100</td>
<td>PN40; PN63; PN100</td>
</tr>
<tr>
<td>Max. temperature</td>
<td>+450°C; +842°F</td>
<td>+450°C; +842°F</td>
<td>+450°C; +842°F</td>
</tr>
<tr>
<td>Line size</td>
<td>DN50…2000; 2…800”</td>
<td>DN50…2000; 2…800”</td>
<td>DN50…2000; 2…800”</td>
</tr>
<tr>
<td>Material primary element</td>
<td>316L</td>
<td>316L</td>
<td>316L</td>
</tr>
<tr>
<td>Material mounting parts</td>
<td>A105, 316L, 16Mo3</td>
<td>A105, 316L, 16Mo3</td>
<td>A105, 316L, 16Mo3</td>
</tr>
<tr>
<td>Optional temperature probe</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

OPTIBAR PT 2000

- **Medium**: Gas, liquid, steam
- **Type**: Compact, remote
- **Sizing**: KROHNE standard
- **Accuracy**: < ±1% uncalibrated; < ±0.5% calibrated
- **Turn down ration (calibrated)**: 1:5 (1:7)
- **Pressure loss**: 40…95%
- **Max. pressure**: PN40
- **Max. temperature**: +450°C; +842°F
- **Line size**: DN50…2000; 2…800”
- **Material primary element**: 316L
- **Material mounting parts**: A105, 316L, 16Mo3
- **Optional temperature probe**: Yes

OPTIBAR OP 1000

- **Medium**: Gas, liquid, steam
- **Type**: Compact, remote
- **Sizing**: ISO 5167:2003; ASME MFC-3M 2004; AGA 3; ASME PTC 19.5 2004
- **Accuracy**: < ±0.6…0.8%
- **Turn down ration (calibrated)**: 1:3 (1:6)
- **Pressure loss**: 40…95%
- **Max. pressure**: PN40; PN63; PN100
- **Max. temperature**: +450°C; +842°F
- **Line size**: DN50…2000; 2…800”
- **Material primary element**: 316L
- **Material mounting parts**: A105, 316L, 16Mo3
- **Optional temperature probe**: No

OPTIBAR OP 1200

- **Medium**: Gas, liquid, steam
- **Type**: Compact, remote
- **Sizing**: ISO 5167:2003; ASME MFC-3M 2004; AGA 3; ASME PTC 19.5 2004
- **Accuracy**: < ±0.5…1.5% calibrated
- **Turn down ration (calibrated)**: 1:6
- **Pressure loss**: 40…95%
- **Max. pressure**: PN40; PN63; PN100
- **Max. temperature**: +450°C; +842°F
- **Line size**: DN15…50; 3/4…2”
- **Material primary element**: 316L
- **Material mounting parts**: A105, 316L, 16Mo3
- **Optional temperature probe**: No

OPTIBAR DP 7060 C

- **Accuracy (of calibrated span)**
 - **Reference accuracy DP**: < ±0.065% up to TD 10:1
 - **Long-term stability**: ±0.1% within 5 years
 - **Total performance**: < ±0.18%
 - **Max. turn down**: 100:1
 - **Reference accuracy pabs.**: < ±0.1%

- **Pressure range**
 - **Sensor**: Piezoresistive
 - **Measurement range**: 10, 30, 100, 500 mbar, 3, 16 bar; 0.15, 0.4, 1.4, 7.2, 43.5, 232 psi
 - **Line pressure**: 40, 160, 420 bar; 580.1, 2320.6, 6091.6 psi
 - **Temperature range**: -40…+85°C; -40…+185°F
 - **Configuration**: Free DTM, also USB interface
 - **Software / HHT**: Yes – generic and DD
 - **Local**: With optional display and adjustment module

- **Material**
 - **Housing**: DIN housing in 1- or 2-chamber configuration: 316L, aluminium, 316L (electro-polished), plastic (PBT)
 - **Diaphragm material**: 316L, Hastelloy C276, Monel 400, Tantal, Monel 400 with gold plating

- **Communication**
 - **Output**: 4…20 mA, HART®, 7, PA, FF

- **Approvals**
 - **Ex**: ATEX / IECEx Ex ia, Ex d, Ex d ia
<table>
<thead>
<tr>
<th>OPTIBAR MR 1000</th>
<th>OPTIBAR MR 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>Compact</td>
</tr>
<tr>
<td>Gas, liquid, steam</td>
<td>Gas, liquid, steam</td>
</tr>
<tr>
<td>ISO 5167:2003; ASME MFC-3M 2004; AGA 3; ASME PTC 19.5 2004</td>
<td>KROHNE standard</td>
</tr>
<tr>
<td>< ±0.5...1.5% calibrated</td>
<td>< ±0.5...1% calibrated</td>
</tr>
<tr>
<td>1:6</td>
<td>1:6</td>
</tr>
<tr>
<td>40...95%</td>
<td>5...12%</td>
</tr>
<tr>
<td>420 bar; 6091.6 psi</td>
<td>420 bar; 6091.6 psi</td>
</tr>
<tr>
<td>+450°C; +842°F</td>
<td>+450°C; +842°F</td>
</tr>
<tr>
<td>DN15...50 / 3/4...2"</td>
<td>DN15...50 / 3/4...2"</td>
</tr>
<tr>
<td>A105, 316L</td>
<td>A105, 316L</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Differential pressure transmitter for flow applications, already with integrated absolute pressure measurement

<table>
<thead>
<tr>
<th>OPTIBAR DP 7040</th>
</tr>
</thead>
<tbody>
<tr>
<td>< ±0.065% up to TD 10:1</td>
</tr>
<tr>
<td>< ±0.1%within 5 years</td>
</tr>
<tr>
<td>< ±0.18%</td>
</tr>
<tr>
<td>100:1</td>
</tr>
<tr>
<td>< ±0.1%</td>
</tr>
</tbody>
</table>

Piezoresistive
10, 30, 100, 500 mbar; 3, 16 bar; 0.15, 0.4, 1.4, 7.2, 43.5, 232 psi
40, 160, 420 bar; 580.1, 2320.6, 6091.6 psi
-40...+85°C, -40...+185°F
-40...+80°C, -40...+185°F

Free DTM, also USB interface
Yes - generic and DD
With optional display and adjustment module
DIN housing in 1- or 2-chamber configuration: 316L, aluminium, 316L (electro-polished), plastic (PBT)
316L, Hastelloy C276, Monel 400, Tantal, Monel 400 with gold plating
4...20 mA, HART® 7, PA, FF
ATEX / IECEx Ex ia, Ex d, Ex d ia

OPTIBAR FC 1000

Flow computer for pressure and temperature compensated gas and steam measurement and gross/net energy calculation

Medium

Water, steam
IAPWS-97

Natural gas

Gases
Ideal gas equation, optional acc. Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson

Thermal oil
Therminol66, Shell Thermia B and various other oils by polynominal approximation

Other mediums
Assumption of constant physical properties

Process inputs

Primary elements
ISO 5167, AGA-3

Volume flow or velocity
Mass flow calculation

Temperature sensor
2x Pt100

Pipe

Thermal expansion
Acc. AGA-3, VDI-2840, ISO 5167

Interfaces

Modbus
Modbus RTU and ASCII

Ethernet
Web server, software updates, backup/restore of parameters

FSK modem
Compatible to HART® field devices; digital transfer of measuring values and device parameters

Analog signals
1x Relay [6A; 230 VAC] 2x SPDT (50 mA; 60 VDC)

Display adapter
Link to a remote display module [optional]

User interface

Display
4.3” TFT color display

Controls
Capacitive touchscreen

Memory
SD-card slot

Inputs

Flow
0/4...20 mA active/passive, HART®, frequency or pulse inputs

Pressure
0/4...20 mA active/passive

Temperature
3- or 4-wire Pt100, max. length 250 m; 820.2 ft; all inputs are galvanically isolated

Outputs

Analog outputs
2x 4...20 mA

Switching outputs
1x Relay [6A; 230 VAC] 2x SPDT [50mA; 60 VDC]

Dimensions

Panel housing 135x65x120 mm; 5.28x2.44x4.8 inch; IP20
External display 144x83x18 mm; 6x3.6x0.72 inch; IP65

Power supply
100...240 VAC or 18...36 VDC
Measuring principle: Deflector plate

DW 181
Inline flow controller, process connection
3/4…2” NPT, G3/4…2

DW 182
Inline flow controller, process connection
DN15…65, 1/2…2 1/2” ASME

DW 183
Inline flow controller, process connection
DN65…200, 3…8” ASME

DW 184
Insertion-type flow controller for pipe diameter ≥250 mm / 10”, process connection DN150, 6” ASME
Flow controllers

DWM 1000
Flow switch with adjustable set point

DWM 2000
Flowmeter with 4...20 mA output

Measuring principle: Electromagnetic
Electromagnetic flow controllers

The measuring principle

As early as 1832, Faraday tried to determine the speed of the current in the Thames by measuring the voltage induced in flowing water by the earth’s magnetic field. Electromagnetic flow measurement is based on Faraday’s Law of induction. According to this law, a specific voltage is induced in a conductor or conductive medium that moves through a magnetic field. This voltage is proportional to the speed of movement of the medium.

On electromagnetic flow controllers, the induced voltage is tapped via two measuring electrodes in conducting contact with the medium.

An electronic converts the signal into a proportional output signal.

Sturdy and maintenance-free:

Flow switch DWM 1000 and flowmeter DWM 2000

KROHNE invented and founded the industrially used electromagnetic flow measuring technology more than 45 years ago. Today, we continue to impress customers with our innovations in this field.

With the DWM 1000 and DWM 2000 flow controllers, we offer two sturdy units.

Depending on the design, the flow speed is monitored (DWM 1000) or measured and output via a 4...20 mA (DWM 2000).

The only prerequisite is that the electrical conductivity of the medium be at least 20 µS/cm. DWM 1000 and DWM 2000 flow controllers are ideal for use with largely homogenous liquids, pastes and sludges – even with solid content.

Industries:

- Water and wastewater
- Food and beverage
- Chemical
- Pharmaceutical
- Process industry
- Pulp and paper
- Mining and minerals
- Steel
Mechanical flow controllers

The measuring principle

With the flow controllers DW 181 to 184, the liquid flows against a spring-mounted disc. The position of the disc changes with increasing flow. A built-in magnet transmits the position to the display and also activates the limit switch.

Always the right choice: Flow controllers DW 181, 182, 183, and 184

With the flow controllers DW 181, 182, 183 and 184, KROHNE offers the ideal flow control solution for virtually any process connection.

Each device is equipped with a limit switch (dry reed contact) and it is possible to install another switch at any time. For greater switching energies of up to 1200 VA, an additional amplifying relay can be installed.

Choose the display which is most adapted to your needs: DW 181, 182, 183, 184 can be ordered with two display types, G and A.

The G display enables visual monitoring of the flow via a 10-point scale. The switching point can be changed at any point along the way. The A display allows a more accurate reading of the flow value [e.g. in l/h or in m³/h] via a scale. With this display, the switching points can be set even when there is no flow.
Flow controllers

<table>
<thead>
<tr>
<th>Flow controllers based on disc actuated measuring principle</th>
<th>Flow controller based on electromagnetic measuring principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW 181 to 184</td>
<td>DWM 1000</td>
</tr>
</tbody>
</table>

Measuring accuracy
- ±15% of switching point
- When \(v > 1 \text{ m/s or } 3.3 \text{ ft/s} \): accuracy ±5% of switching point
- When \(v < 1 \text{ m/s or } 3.3 \text{ ft/s} \): accuracy ±2% of switching point, ±3 cm/s; ±1.2 in/s

Repeatability
- ±3% of switching point
- ±1% of switching point

Limit switches
- 1 or 2 binary outputs;
- 1 or 2 relay outputs
- 1 binary output

Output
- -

Communication
- -

Power supply
- Switching voltage AC: 24, 48, 110, 240 VAC;
- switching voltage DC: 24, 48, 110 VDC
- 48...240 VAC; 48 VDC;
- relay voltage: 48, 110, 240 VAC; 48 VDC
- 48…240 VAC; 48 VDC;
- relay voltage: 48, 110, 240 VAC; 48 VDC

Protection category
- Polycarbonate housing: IP65 (non-Ex and Ex i)
- Aluminium housing: IP65 (non-Ex and Ex d)
- HT version (alu terminal box): IP20, 66
- Aluminium housing: IP65
- Stainless steel housing: IP68

Nominal size
- Pipe diameter
 - DN15; 1/2”
 - DN25; 1”
- Connection
 - 3/4…2” NPT; G3/4…2
 - DN15…200; 1/2…8”
 - Std fitting G1A; screw-on welding socket (Ø39 mm; Ø1.25”)
 - long sensor (option) 1 1/2” NPT; G1 1/2
 - screw-on welding socket (Ø60 mm; Ø2.4”)
 - spool piece (option) DN25…50; 1…2”, DN32;
 - 1 1/4” on request;
 - Optional FT Tuchenhagen VARIVENT® connection for hygienic applications

Pressure ratings
- Max. operating pressure
 - 100 barg; 1450.4 psig, higher on request
 - 25 barg; 362.6 psig

Process conditions
- Medium
 - Homogeneous, clean liquids
 - Conductive liquids, pastes, slurries ≥20 mS/cm
- Viscosity standard
 - ≤30 mPas; 0.02 lb/fts
 - -
- Viscosity special version
 - ≤250 mPas; 0.16 lb/fts
 - -
- Measuring range
 - 0.2…4 m/s; 0.66…13.1 ft/s
 - 0.1…9.9 m/s; 0.3…32.5 ft/s

Temperature ranges
- Process
 - -40...+150°C; -40...+302°F
 - -25...+300°C; -13...+572°F (high temperature)
- Ambient
 - -40...+80°C; -40...+176°F
 - -25...+60°C; -13...+140°F (high temperature)

Materials
- Measuring tube
 - Bronze, stainless steel
 - Stainless steel, zirconium
- Measuring system
 - Stainless steel
 - Electrode: platinum

Approvals
- Ex
 - ATEX
 - -

Miscellaneous
- EAC
 - EAC
Flow controller based on electromagnetic measuring principle

Product: DWM 2000

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring accuracy</td>
<td>When (v > 1 \text{ m/s}) or (3.3 \text{ ft/s}): accuracy ±5% of measured value ±2% if calibrated onsite when (v < 1 \text{ m/s}) or (3.3 \text{ ft/s}): accuracy ±2% of measured value, ±3 cm/s; ±1.2 in/s</td>
</tr>
<tr>
<td>Repeatability</td>
<td>±1.5% of measured value</td>
</tr>
<tr>
<td>Limit switches</td>
<td>-</td>
</tr>
<tr>
<td>Output</td>
<td>4...20 mA, 3-wire</td>
</tr>
<tr>
<td>Communication</td>
<td>RS232</td>
</tr>
<tr>
<td>Power supply</td>
<td>12, 24 VDC, 50 mA</td>
</tr>
<tr>
<td>Protection category</td>
<td>Aluminium housing: IP65</td>
</tr>
<tr>
<td></td>
<td>Stainless steel housing: IP68</td>
</tr>
<tr>
<td></td>
<td>Aluminium housing with display: IP55</td>
</tr>
<tr>
<td>Nominal size</td>
<td>>DN25; 1”</td>
</tr>
<tr>
<td>Pipe diameter</td>
<td>Std fitting G1A, screw-on welding socket (Ø39 mm; Ø1.25”)</td>
</tr>
<tr>
<td></td>
<td>Optional long sensor 1 1/2” NPT; G1 1/2, screw-on welding socket (Ø60 mm; Ø2.4”) spool piece (option) DN25...50; 1...2”, DN32; 1 1/4” on request Optional FT Tuchenhagen VARIVENT® connection for hygienic applications</td>
</tr>
<tr>
<td>Pressure ratings</td>
<td>Max. operating pressure 25 barg; 362.6 psig</td>
</tr>
<tr>
<td>Process conditions</td>
<td>Conductive liquids, pastes, slurries ≥20 mS/cm</td>
</tr>
<tr>
<td>Viscosity standard</td>
<td>-</td>
</tr>
<tr>
<td>Viscosity special version</td>
<td>-</td>
</tr>
<tr>
<td>Measuring range</td>
<td>1...8 m/s; 3.3...26.3 ft/s</td>
</tr>
<tr>
<td>Temperature ranges</td>
<td>Process -25...+150°C; -13...+302°F -25...+60°C; -13...+140°F (IP68)</td>
</tr>
<tr>
<td></td>
<td>Ambient -25...+60°C; -13...+140°F</td>
</tr>
<tr>
<td>Materials</td>
<td>Measuring tube Stainless steel, zirconium</td>
</tr>
<tr>
<td></td>
<td>Measuring system Electrode: platinum</td>
</tr>
<tr>
<td>Approvals</td>
<td>Ex</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous EAC</td>
</tr>
</tbody>
</table>
KROHNE is committed to making communication convenient. Which is why our field devices communicate reliably with controllers, control systems and PCs, and can also be used for a variety of control and regulating tasks. They meet all of the prerequisites for integration into modern plant asset management systems, based on integration technologies such as DD/EDD and FDT/DTM.

We are a longstanding member of PACTware™ and the FDT Group®. Since 2003, we have made DTMs available for our field devices with HART®, PROFIBUS® or FOUNDATION™ fieldbus interfaces.

For remote monitoring of applications such as water metering, KROHNE has developed a GSM-based solution for online data transmission and logging.

So you will always have the information you need conveniently close to hand.

Open for the future

PACTware™ and DTMs

PACTware™ is a manufacturer-independent tool based on FDT technology, providing device configuration and operation. It is free of charge.

DTMs are drivers for FDT-based systems. KROHNE DTMs are also available free of charge, without licence and without any functional restrictions.
Clear and fast access to process and device data from any level

KROHNE DTMs are available for many field devices with HART®, FOUNDATION™ fieldbus or PROFIBUS® communication interfaces. They can be integrated into all FDT frame applications.

To assure conformity with the FDT standard, KROHNE DTMs are certified by the FDT Group after certification tests at the KROHNE FDT DTM Test Site, accredited in 2014. In addition, intensive interoperability tests with frames of major host system suppliers are performed.

KROHNE DTMs do not require any licence, providing full functionality free of charge. Next to standard operating features, they provide additional information for commissioning and application engineers.

For example, the DTM for the MFC 400 mass flow converter features clear and configurable diagnostics according to NAMUR recommendations NE 107, and an intuitive layout for fast access to the most used functions. DTMs for level devices are enhanced by fully configurable parameterisation screens for easy commissioning.

Together with PACTware™, KROHNE DTMs come alongside the device on a CD and can also be downloaded from KROHNE Download Centre at www.krohne.com.
KROHNE services

Engineering services · Online tools and services · Maintenance services · Quality · Training and seminars · Calibration

For us, service starts at our first contact with you and lasts as long as the life of our systems installed at your plant.

Quality and reliability are key to maintaining the highest service standards. All KROHNE feeder factories are ISO 9001 certified. In fact, long before ISO 9000 existed, KROHNE was already manufacturing to the highest industrial standards. Now certification exists in every factory to demonstrate that we not only fulfil ISO requirements but have passed the ISO certification procedure every three years since the standard was introduced.

But it’s not simply a one-way process. We actively encourage companies like yours to participate in our research and development activities. Many of our products that are today considered the pinnacle of excellence were developed in cooperation with our customers.

Beyond the highest requirements

Engineering services through all project stages

- Project management
- Control and asset management systems in project concept phase
- Basic engineering based on the specification required by the user
- Detail engineering phase
- Commissioning services
- On-site start-up and commissioning
- Product training (on-site)
- Calibration services
Proven quality

Before shipping, every meter is thoroughly inspected. This rigorous programme of specific measurements, tests and factory inspections is called KROHNE proved.

So, if you install and operate any KROHNE product by following our operating instructions correctly, problems shouldn’t occur. If they do, we will provide you with all the technical support and service you need.

Choose from maintenance and service contracts tailored to suit all business sizes and needs:

- Spare parts and consumables
- Field service and on-site repair
- Returns
- Workshop repair
- Helpdesk

KROHNE Academy and KROHNE Academy online

The KROHNE Academy is a series of seminars organised in collaboration with leading automation companies aimed at plant engineers, operators and contractors across the process industries. It brings industry experts together to provide an insight into the various technologies, industrial standards and procedures that plant operators can find themselves faced with.

Taking place in various countries, KROHNE Academy seminars address key operating issues, from plant safety to ways of increasing plant efficiency and controlling costs, and show possible solutions. They also provide an ideal opportunity for you to speak to the experts and benefit from their vast application knowledge.

Learn more about KROHNE Academy at www.krohne.com

KROHNE Academy online is a free eLearning platform that contains audio-enhanced, interactive Web Based Trainings. As with its on-site seminars, the online KROHNE academy learning material is vendor-agnostic and not specific to individual products and/or industries. The main focus of each course is on a measurement technology such as Variable Area, Vortex, Ultrasonic or Mass flow or to a more general topic such as the basics of gas measurement or pipeline leak detection.

Register now for free and start your training at http://academy-online.krohne.com

Additional online services:

(Find them at www.krohne.com)

- **Configure It**
 Configure It is a highly advanced online configuration tool for standard devices offering free 2D/3D CAD data of KROHNE flow devices for planning engineers. It enables you to configure any KROHNE product to handle your application in a few simple steps.

- **KROVASYS 4**
 Selection and calculation tool for variable area flowmeters.

- **Planning tool for water & wastewater industry**
 The planning tool for wastewater treatment plants as well as water and wastewater applications for generating tender documents covering flow, level, analysis, pressure and temperature.

- **PiCK**
 Get any information related to your KROHNE product from our dedicated online resource PiCK. Just enter your serial number, and key material like manuals, Quick Starts and calibration documents is at your fingertips.
Calibration is one of KROHNE’s core areas of expertise. If you buy a KROHNE product, you will get a measuring device that performs most accurate with low uncertainty under real process conditions.

To achieve this, we operate more than 120 calibration facilities for volume flow, mass flow, level, temperature, density and pressure to (wet-)calibrate any device we manufacture. For example, every flowmeter is wet-calibrated using water or air as standard before leaving our facilities.

We can also provide customer specific calibration such as:

- Carry out multipoint calibrations
- Vary different parameters such as temperatures, viscosities, pressures etc.
- Use the actual medium or similar
- Build or emulate customer-specific flow geometries
- Use piping provided by the customer

For calibration we only use direct comparison of measurands (e.g. we calibrate our Coriolis mass flowmeters with a gravimetric weighing system). Our calibration rigs are the most accurate used in measuring device production worldwide: the accuracy of the reference is usually 5 to 10 times better than that of the meter under test.
This goes for small as well as for very large sizes: KROHNE operates the world’s most precise volumetric calibration rig for flowmeters up to DN 3000/120” with a certified accuracy of 0.013 %. The reference vessel is a 44 m/144 ft high tank containing almost ½ million litres/132,000 gal (US) of water which allows for a maximum flow rate of 30,000 m³/h/7,925,000 gal (US)/h.

Certified technology for fiscal & custody transfer applications

Our meters can be calibrated and certified according to various standards such as OIML, API, Measuring Instruments Directive (MI-001, 002, 004, 005), GOST, etc. The standards we use for calibration are ISO/IEC 17025 accredited and traceable to international or national standards. Regular inspections by national metrology institutes, round robin tests and alignments with national and international metrological standards according to ISO 9000 and EN 45000 guarantee the quality and comparability of our calibration rigs. Staff performing the calibrations are trained and given regular re-trainings to ensure quality and continuity.
KROHNE – Process instrumentation and Measurement solutions

- Flow
- Level
- Temperature
- Pressure
- Process analysis
- Services